100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Overzicht bewijzen (en eigenschappen) wiskunde met bedrijfseconomische toepassingen 1

Rating
4.0
(1)
Sold
1
Pages
28
Uploaded on
30-07-2022
Written in
2021/2022

Dit is een volledig overzicht van alle bewijzen en eigenschappen die te kennen zijn voor de examens (1e en 2e semester) van het vak Wiskunde met bedrijfseconomische toepassingen, gegeven in 1e bachelor TEW door professor Ann De Schepper

Show more Read less
Institution
Module










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Module

Document information

Uploaded on
July 30, 2022
Number of pages
28
Written in
2021/2022
Type
Summary

Subjects

Content preview

Overzicht bewijzen en eigenschappen Wiskunde 1

WISKUNDE MET (BEDRIJFS)ECONOMISCHE TOEPASSINGEN 2021-
2022 BEWIJZEN semester 1
O 5.3.1 GEMIDDELDE WAARDE VERSUS MARGINALE WAARDE (P. 131)
o Als we de afgeleide van de gemiddelde functie berekenen, dan vinden we

o
d
dx
(⟨ f ⟩ ( x ) ) = d ( )
f (x ) x ∙ f ' ( x )−f ( x )
dx x
=
x
2



Omdat de noemer enkel een kwadraat bevat, wordt het teken van de breuk bepaald door de teller.
Er geldt:

d
 Als de gemiddelde functie stijgt, dan is (⟨ f ⟩ ( x ) ) ≥ 0
dx

' ' f (x)
Hieruit volgt dat x ∙ f ( x ) of f ( x ) ≥
x
d
 Als de gemiddelde functie daalt, dan is (⟨ f ⟩ ( x ) ) ≤ 0
dx

' f (x)
Hieruit volgt dat x ∙ f ' ( x ) ≤ f ( x ) of f ( x ) ≤
x
d
 Als de gemiddelde functie een lokaal extremum bereikt, dan is ( ⟨ f ⟩ ( x ) ) =0
dx

' f (x)
Hieruit volgt dat x ∙ f ' ( x )=f ( x ) of f ( x )=
x
O 8.2.3. AFLEIDEN VAN IMPLICIETE FUNCTIES (P. 169)
o Wanneer de vergelijking van een functie met één onafhankelijke veranderlijke gegeven is in een
impliciete vorm F ( x , y )=0, dan kan de afgeleide voor de (onbekende) expliciete vorm y=f ( x ) in
'
' −F x ( x 0 , y 0 )
een punt x 0 gevonden worden als f ( x 0 )= met y 0 bepaald door F ( x 0 , y 0 )=0 ,
F'y ( x 0 , y 0 )
o voor zover de functie f gedefinieerd is en de partiële afgeleide in de noemer verschilt van nul.
o Je kan dit terugvinden door te vertrekken vanuit de totale differentiaal (hier in de verkorte notatie):
o F ( x , y )=0
o ⇓
o dF ( x , y )=0
o ⇓
' '
o F x dx+ F y dy=0
o ⇓
' '
o F y dy =−F x dx
o ⇓

, '
dy −F x
o = '
dx Fy
O
O
O
O 8.2.3. AFLEIDEN VIA IMPLICIETE FUNCTIES (P. 170)
O Eigenschap 8.6 (Impliciete functie  F ( x , y , z )=0 )
O Wanneer de vergelijking van een functie met twee onafhankelijke veranderlijken gegeven is in
O een impliciete vorm F ( x , y , z )=0 , dan kunnen de partiële afgeleiden voor de (onbekende)
O expliciete vorm z=f ( x , y ) in een punt ( x 0 , y 0 ) gevonden worden als
'
O
' −F x ( x 0 , y 0 , z 0 )
O
f ( x0, y0)=
x
F 'z ( x0 , y 0 , z 0 )
O '
' −F y ( x 0 , y 0 , z 0 )
O f ( x 0 , y 0 )=
y '
F z ( x0 , y0 , z0 )
O
met z 0 bepaald door F ( x 0 , y 0 , z 0 )=0,
O

Ook dit resultaat kan je terugvinden vanuit de totale differentiaal (hier opnieuw in verkorte notatie),
nu voor de drie veranderlijken:

F ( x , y , z )=0

O dF ( x , y , z )=0
O

O
' ' '
O F x dx+ F y dy + F z dz=0
O ⇓
O
F 'z dz=−F 'x dx−F 'y dy
O

O
O −F 'x F 'y
dz= dx− dy
O F 'z F'z
O

O
' '
∂ z −F x ∂ z −F y
O = ' en = '
∂x Fz ∂y Fz
O
O
O GEVOLG 8.1. (RAAKLIJN) (P. 171)
o De vergelijking van de raaklijn in het punt P=( x0 , y 0 ) aan de curve met impliciete vergelijking
F ( x , y )=0 luidt F 'x ( x0 , y 0 ) ( x−x 0 ) + F'y ( x 0 , y 0 )( y− y 0 ) =0

, o Voor zover alle partiële afgeleiden bestaan.
o Om dit aan te duiden vertrekken we van de vergelijking voor de raaklijn zoals we ze eerder vonden:
y− y 0=f ' ( x 0 ) ( x−x 0 ), met f de (onbekende) expliciete functie die bij de curve hoort.
o We weten nu dat
'
' −F x ( x 0 , y 0 )
o f ( x 0 )= '
F y ( x0 , y0 )
o
o
o Invullen in de vergelijking van de raaklijn geeft
'
−F x ( x 0 , y 0 )
o y− y 0= ' ( x−x 0 )
F y ( x0 , y0)
o De noemer wegwerken geeft
o F 'y ( x 0 , y 0 )( y− y 0 ) =−F'x ( x 0 , y 0 ) ( x−x 0 );
brengen we alles aan één kant van het gelijkheidsteken, dan vinden we inderdaad het vermelde
resultaat.

O GEVOLG 8.2. (RAAKVLAK) (P. 172)
O De vergelijking van het raakvlak in het punt P=( x0 , y 0 , z 0 ) aan het oppervlak met impliciete
vergelijking F ( x , y , z )=0 luidt
O F 'x ( x0 , y 0 , z 0 )( x−x 0 ) + F 'y ( x0 , y 0 , z 0 ) ( y− y 0 ) + F'z ( x 0 , y 0 , z 0 ) ( z−z 0 ) =0
o Voor zover alle partiële afgeleiden bestaan.
o
Om dit aan te tonen vertrekken we van de vergelijking voor het raakvlak zoals we ze eerder zagen:
z−z 0=f 'x ( x 0 , y 0 )( x −x0 ) + f 'y ( x 0 , y 0 ) ( y − y 0 )
met f de (onbekende) expliciete functie die bij het oppervlak hoort.
We weten nu dat
'
' −F x ( x 0 , y 0 , z 0 )
f ( x0, y0)=
x '
F z ( x0 , y 0 , z 0 )
o en dat
−F 'y ( x 0 , y 0 , z 0 )
f 'y ( x 0 , y 0 )= '
F z ( x 0 , y0 , z0 )
o Invullen in de vergelijking van het raakvlak geeft
' '
−F x ( x 0 , y 0 , z 0 ) F y ( x0 , y0 , z0 )
o z−z 0= ' ( x−x 0 )− ' ( y− y 0 )
F z ( x0 , y0 , z0 ) F z ( x0 , y 0 , z 0 )
De noemer wegwerken geeft
' ' '
F z ( x 0 , y 0 , z 0 )( z −z 0 )=−F x ( x 0 , y 0 , z 0 )( x −x0 ) −F y ( x 0 , y 0 , z 0 ) ( y− y 0 ) ;
brengen we alles aan één kant van het gelijkheidsteken, dan vinden we inderdaad het vermelde
resultaat.
O
O 8.3.1. SAMENGESTELDE FUNCTIES (P. 174)

Reviews from verified buyers

Showing all reviews
2 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
louiseevens Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
148
Member since
3 year
Number of followers
103
Documents
20
Last sold
2 weeks ago

3.9

10 reviews

5
2
4
5
3
3
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions