100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Functions of Several Variables solved questions

Rating
-
Sold
-
Pages
15
Grade
A
Uploaded on
18-07-2022
Written in
2021/2022

Functions of Several Variables solved questions

Institution
Maths
Module
Maths









Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
July 18, 2022
Number of pages
15
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

CHAPTER 41
Functions of Several Variables

MULTIVARIATE FUNCTIONS AND THEIR GRAPHS

41.1 Sketch the cylinder

See Fig. 41-1. The surface is generated by taking the ellipse in the ry-plane and moving it
parallel to the z-axis (z is the missing variable).




Fig. 41-1 Fig. 41-2

41.2 Describe and sketch the cylinder z = y .
See Fig. 41-2. Take the parabola in the _yz-plane z = y and move it parallel to the jt-axis (x is the missing
variable).

41.3 Describe and sketch the graph of 2x + 3>y = 6.
See Fig. 41-3. The graph is a plane, obtained by taking the line 2x + 3y = 6, lying in the *.y-plane, and
moving it parallel to the z-axis.




Fig. 41-3 Fig. 41-4


41.4 Write the equation for the surface obtained by revolving the curve z = y2 (in the yz-plane) about the z-axis.
When the point (0, y*, z*) on z - y2 is rotated about the z-axis (see Fig. 41-4), consider any resulting
point (x, y, z). Clearly, z = z* and Hence, * +y" = (y*) = z* = z. So, the result-
ing points satisfy the equation z = x + y2.

361

, 362 CHAPTER 41

41.5 Write an equation for the surface obtained by rotating a curve f ( y , z) = 0 (in the yz-plane) about the z-axis.
This is a generalization of Problem 41.4. A point (0, y*, z*) on the curve yields points (x, y, z), where
z = z* and Hence, the point (x, y, z) satisfies the equation

41.6 Write an equation for the surface obtained by rotating the curve (in the yz-plane) about the
z-axis.

By Problem 41.5, the equation is obtained by replacing y by in the original equation. So, we get



an ellipsoid.

41.7 Write an equation of the surface obtained by rotating the hyperbola (in the ry-plane) about the
*-axis.

By analogy with Problem 41.5, we replace y by obtaining
1. (This surface is called a hyperboloid of two sheets.)

41.8 Write an equation of the surface obtained by rotating the line z = 2y (in the yz-plane) about the z-axis.
By Problem 41.5, an equation is This is a cone (with both nappes) having
the z-axis as axis of symmetry (see Fig. 41-5)




Fig. 41-5 Fig. 41-6

41.9 Write an equation of the surface obtained by rotating the parabola z = 4 — x2 (in the xz-plane) about the
z-axis. (See Fig. 41-6).
By Problem 41.5, an equation is z = 4 —i z = 4 - (x2 + y2). This is a circular paraboloid.

41.10 Describe and sketch the surface obtained by rotating the curve z = \y\ (in the yz-plane) about the z-axis.
By Problem 41.5. an equation is which is equivalent to z 2 = x2 + y2 for z a 0. This is
a right circular cone (with a 90° apex angle); see Fig. 41-7.




Fig. 41-7
£6.73
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jureloqoo

Also available in package deal

Thumbnail
Package deal
3k solved calculus questions
-
46 2022
£ 260.90 More info

Get to know the seller

Seller avatar
jureloqoo METU
View profile
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
46
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions