100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting hs 3 transformaties van toevalsveranderlijken

Rating
-
Sold
-
Pages
3
Uploaded on
24-12-2021
Written in
2021/2022

een samenvatting van alle begrippen mbt transformaties van toevalsveranderlijken, uit hs3

Institution
Module








Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Module

Document information

Summarized whole book?
No
Which chapters are summarized?
Hs 3 transformaties van toevalsveranderlijken
Uploaded on
December 24, 2021
Number of pages
3
Written in
2021/2022
Type
Summary

Subjects

Content preview

Transformaties van toevalsveranderlijken

1. Algemene formules voor verdelingen en dichtheden

algemene procedure:
Y (= de getransformeerde) is een functie van X. Je begint met de c.v.f. op te stellen van Y, en je herwerkt naar X
FY (y) = P(Y ≤ y) = P( g(X) ≤ y)

het model voor een toevalsveranderlijke Y wordt berekend vanuit het model voor X en het gekende verband Y = g(X)
De bedoeling is dan de uitdrukking P(g(X) ≤ y) om te werken tot een functie van Y

Het is belangrijk om na te gaan of de functie g een stijgende of dalende functie is.
Want als het om een dalende functie gaat inverteren, keert het teken om.

=> De Procedure formeel opschrijven geeft een algemene formule voor de dichtheid van een getransformeerde veranderlijke

Als g(x) monotoon stijgend is, dan is g(x) inverteerbaar,
−1 −1
FY (y) = P(g(X) ≤ y) = P(X ≤ g (y)) = FX(g (y))

−1 −1
Door afleiden vinden we dan fY (y) = fX(g (y)) * dg (y)/ dy .

−1
Noteer x(y) = g (y): fY (y) = fX(x(y))* dx/ dy

Als g(x) monotoon dalend is, dan keert het ongelijkheidsteken om
−1 −1
FY (y) = P(g(X) ≤ y) = P(X ≥ g (y)) = 1 − FX(g (y))

De afgeleide geeft fY (y) = −fX(x(y))* dx/ dy

Omdat dx/dy nu negatief is, kunnen we absolute waardes zetten en het minteken laten vallen

Dit geeft volgende formule voor monotone transformaties
fY (y) = fX(x(y)) |dx/dy| = fX(x(y))|x ′(y)|
£2.68
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
julienvandecasteele

Also available in package deal

Get to know the seller

Seller avatar
julienvandecasteele Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
5
Member since
4 year
Number of followers
4
Documents
19
Last sold
3 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions