Please check the examination details below before entering your candidate information
Candidate surname Other names
Centre Number Candidate Number
Pearson Edexcel
Level 3 GCE
Monday 5 Oct 2020
Afternoon (Time: 1 hour 40 minutes) Paper Reference 8FM0/01
Further Mathematics
Advanced Subsidiary
Paper 1: Core Pure Mathematics
You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator
Candidates may use any calculator allowed by Pearson regulations.
Calculators must not have the facility for symbolic algebra
manipulation, differentiation and integration, or have retrievable
mathematical formulae stored in them.
Instructions
•• Use black ink or ball-point pen.
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
• centre
Fill in the boxes at the top of this page with your name,
number and candidate number.
• clearly labelled.
Answer all questions and ensure that your answers to parts of questions are
• Answer the questions in the spaces provided
– there may be more space than you need.
• You should show sufficient working to make your methods clear. Answers
without working may not gain full credit.
• Inexact answers should be given to three significant figures unless
otherwise stated.
Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 10 questions in this question paper. The total mark for this paper is 80.
• – use this asfora guide
The marks each question are shown in brackets
as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over
*P62685A0128*
P62685A
©2020 Pearson Education Ltd.
1/1/1/1/1/1/1/
,1. A system of three equations is defined by
kx + 3y – z = 3
3x – y + z = –k
–16x – ky – kz = k
where k is a positive constant.
Given that there is no unique solution to all three equations,
(a) show that k = 2
(2)
Using k = 2
(b) determine whether the three equations are consistent, justifying your answer.
(3)
(c) Interpret the answer to part (b) geometrically.
(1)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
2
*P62685A0228*
, Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
(Total for Question 1 is 6 marks)
3
*P62685A0328* Turn over
Candidate surname Other names
Centre Number Candidate Number
Pearson Edexcel
Level 3 GCE
Monday 5 Oct 2020
Afternoon (Time: 1 hour 40 minutes) Paper Reference 8FM0/01
Further Mathematics
Advanced Subsidiary
Paper 1: Core Pure Mathematics
You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator
Candidates may use any calculator allowed by Pearson regulations.
Calculators must not have the facility for symbolic algebra
manipulation, differentiation and integration, or have retrievable
mathematical formulae stored in them.
Instructions
•• Use black ink or ball-point pen.
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
• centre
Fill in the boxes at the top of this page with your name,
number and candidate number.
• clearly labelled.
Answer all questions and ensure that your answers to parts of questions are
• Answer the questions in the spaces provided
– there may be more space than you need.
• You should show sufficient working to make your methods clear. Answers
without working may not gain full credit.
• Inexact answers should be given to three significant figures unless
otherwise stated.
Information
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 10 questions in this question paper. The total mark for this paper is 80.
• – use this asfora guide
The marks each question are shown in brackets
as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over
*P62685A0128*
P62685A
©2020 Pearson Education Ltd.
1/1/1/1/1/1/1/
,1. A system of three equations is defined by
kx + 3y – z = 3
3x – y + z = –k
–16x – ky – kz = k
where k is a positive constant.
Given that there is no unique solution to all three equations,
(a) show that k = 2
(2)
Using k = 2
(b) determine whether the three equations are consistent, justifying your answer.
(3)
(c) Interpret the answer to part (b) geometrically.
(1)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
2
*P62685A0228*
, Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
(Total for Question 1 is 6 marks)
3
*P62685A0328* Turn over