100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary CIE AS Chemistry Note Unit 16 - Halogen derivatives

Rating
-
Sold
-
Pages
8
Uploaded on
10-03-2021
Written in
2020/2021

These notes cover the whole syllabus of 9701 Cambridge International Examination, AS Level Chemistry Notes what divided into to different Units. You may find each notes have corresponded specifically in each term from syllabus. CIE AS Chemistry Note Unit 16 - Halogen derivatives

Show more Read less









Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
March 10, 2021
Number of pages
8
Written in
2020/2021
Type
Summary

Content preview

Alevel Chemistry Revision OC 16
Revision Material
Duration: 9th – 14th March

Topic 16 Halogen derivatives
The inclusion of a halogen atom within an organic molecule affects its reactivity. The reactions of halogenoalkanes are very important in organic chemistry.



Learning outcomes
Candidates should be able to:
16.1 Halogenoalkanes (a) recall the chemistry of halogenoalkanes as exemplified by:
(i) the following nucleophilic substitution reactions of bromoethane: hydrolysis, formation
of nitriles, formation of primary amines by reaction with ammonia
(ii) the elimination of hydrogen bromide from 2-bromopropane
(b) describe the SN1 and SN2 mechanisms of nucleophilic substitution in halogenoalkanes
including the inductive effects of alkyl groups (see Section 15.2(c))
(c) recall that primary halogenoalkanes tend to react via the SN2 mechanism; tertiary
halogenoalkanes via the SN1 mechanism; and secondary halogenoalkanes by a mixture of
the two, depending on structure


16.2 Relative strength of (a) interpret the different reactivities of halogenoalkanes (with particular reference to hydrolysis
the C-Hal bond and to the relative strengths of the C–Hal bonds)
(b) explain the uses of fluoroalkanes and fluorohalogenoalkanes in terms of their relative
chemical inertness
(c) recognise the concern about the effect of chlorofluoroalkanes on the ozone layer

, 16.1 Halogenoalkanes
(a) recall the chemistry of halogenoalkanes as exemplified by:
Halogenoalkanes are alkanes which contain a halogen atom covalently bonded to a carbon atom. When naming
halogenoalkanes, the prefix of the halogen (fluoro-/chloro-/bromo-/iodo-) is put before the alkane name with a number
to indicate which carbon the halogen is bonded to. For example 1-bromopropane, 3-chlorohexane and 2-iodopentane.


Structure and names
General formula CnH2n+1X, where X = F, Cl, Br or I
Types and naming of halogenoalkanes




Polarity of halogenoalkanes
ü halogen atoms are highly electronegative so that the halogen atoms in organic compounds will increase the polarity
of the molecules
Carbon and halogens have different electronegativities and halogenoalkanes have polar molecules with a polar C-X
bond.




chlorine is more electronegative than carbon electron flow from carbon to chlorine dipole produced

The polarity produces an electron-deficient carbon atom, 𝑐 !" which is important in the reactions od halogenoalkanes.
The polarity decreases from fluorine to iodine, reflecting the decrease in electronegativity down the halogen group.


Physical properties
- insoluble in water
- denser than water
- relatively higher boiling point / melting point than hydrocarbons (no hydrogen bonds)


(i) the following nucleophilic substitution reactions of bromoethane: hydrolysis, formation of nitriles, formation of
primary amines by reaction with ammonia
Nucleophiles are species that donate electrons. Common nucleophiles include: OH- CN- and NH3 .
The carbon-halogen bond in halogenoalkanes is polar because there is a large difference in electronegativity of these atoms. Halogens (particularly

chlorine and fluorine) are much more electronegative than carbon meaning that the bonding pair of electrons is drawn towards the halogen. The polarity of

this bond makes it relatively easy to break. When the bond breaks, a positive carbocation intermediate is formed which attracts nucleophiles.

Nucleophile – a substitution that donates long pair of electrons in a reaction (electron pair donor)
e.g. :OH- , :H2O, :Cl–, :Br–, :I–, :NH3–, :CN–
R-X + H2O → R-OH + HX (NaOH, reflux)


1. Substitution of reactions with aqueous alkali, OH– (aq).
CH3CH2Br + NaOH → CH3CH2OH + NaBr
Bromoethane ethanol
OR CH3CH2Br + OH– → CH3CH2OH + Br–
£4.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
YNL

Also available in package deal

Thumbnail
Package deal
CIE AS Level Organic Chemistry Note
-
1 7 2021
£ 30.43 More info

Get to know the seller

Seller avatar
YNL University College London
View profile
Follow You need to be logged in order to follow users or courses
Sold
20
Member since
4 year
Number of followers
13
Documents
27
Last sold
2 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions