SOLUTIONS MANUAL
FUNDAMENTALS OF
M
MODERN
ED
MANUFACTURING:
ST
MATERIALS, PROCESSES, AND SYSTEMS
U
MIKELL P. GROOVER
Professor of Industrial and Manufacturing Systems Engineering
D
Lehigh University
Y
John Wiley & Sons, Inc., New York
1
,MEDSTUDY.COM
PREFACE
This is the Solutions Manual for the textbook Fundamentals of Modern Manufacturing:
Materials, Processes, and Systems (Second Edition). It contains the answers to the Review
Questions and Multiple Choice Quizzes at the end of the Chapters 2 through 44, as well as the
Problems at the end of Chapters 3, 4, 6, 10, 11, 13, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30,
31, 33, 34, 35, 38, 40, 42, and 43. There are approximately 740 review questions, 500 quiz questions,
and 500 problems (nearly all of them quantitative) in the text.
I have personally answered all of the questions and solved all of the quizzes and problems and have
personally recorded the solutions in this booklet. Many of the problems have been tested in class, thus
M
giving me an opportunity to compare my own answers with those developed by the students. Despite
my best efforts to avoid errors in this solutions manual, I am sure that errors are present. I would
appreciate hearing from those of you who discover these errors, so that I can make the necessary
ED
corrections in subsequent editions of the Solutions Manual. Similarly, I would appreciate any
suggestions from users of the text itself that might help to make any subsequent editions more accurate,
more relevant, and easier to use. My address is:
Dr. Mikell P. Groover
Department of Industrial and Manufacturing Systems Engineering
ST
Lehigh University
200 West Packer Avenue
Bethlehem, PA 18015
Office telephone number 610-758-4030.
U
Fax machine number 610-758-4886.
E-mail addresses: either
D
or
Y
I hope you find the text and this Solutions Manual to be helpful teaching aids in your particular
manufacturing course.
Mikell P. Groover
2
,MEDSTUDY.COM
TABLE OF CONTENTS:
Chapter Chapter Title* Page
1. Introduction (No questions or problems)
2. The Nature of Materials 4
3. Mechanical Properties of Materials (P) 7
4. Physical Properties of Materials (P) 18
5. Dimensions, Tolerances, and Surfaces 21
6. Metals (P) 24
7. Ceramics 29
8. Polymers 32
9. Composite Materials 36
10. Fundamentals of Casting (P) 39
11. Metal Casting Processes (P) 49
12. Glassworking 57
M
13. Shaping Processes for Plastics (P) 60
14. Rubber Processing Technology 70
15. Shaping Processes for Polymer Matrix Composites 73
ED
16. Powder Metallurgy (P) 76
17. Processing of Ceramics and Cermets 84
18. Fundamentals of Metal Forming (P) 87
19. Bulk Deformation Processes (P) 92
20. Sheet Metalworking (P) 112
21. Theory of Metal Machining (P) 122
ST
22. Machining Operations and Machine Tools (P) 134
23. Cutting Tool Technology (P) 142
24. Economic and Product Design Considerations in Machining (P) 153
25. Grinding and Other Abrasive Processes (P) 166
26. Nontraditional Machining and Thermal Cutting Processes (P) 173
U
27. Heat Treatment of Metals 180
28. Cleaning and Surface Treatments 182
29. Coating and Deposition Processes (P) 184
D
30. Fundamentals of Welding (P) 190
31. Welding Processes (P) 197
32. Brazing, Soldering, and Adhesive Bonding 207
Y
33. Mechanical Assembly (P) 211
34. Rapid Prototyping (P) 218
35. Processing of Integrated Circuits (P) 222
36. Electronics Assembly and Packaging 230
37. Microfabrication Technologies 233
38. Numerical Control and Industrial Robotics (P) 235
39. Group Technology and Flexible Manufacturing Systems 244
40. Production Lines (P) 246
41. Manufacturing Engineering 253
42. Production Planning and Control (P) 256
43. Quality Control (P) 263
44. Measurement and Inspection 271
*(P) indicates chapters with problem sets.
3
, MEDSTUDY.COM
2 THE NATURE OF MATERIALS
Review Questions
2.1 The elements listed in the Periodic Table can be divided into three categories. What are these
categories and give an example of each?
Answer. The three types of elements are metals (e.g., aluminum), nonmetals (e.g., oxygen), and
semimetals (e.g., silicon).
2.2 Which elements are the noble metals?
Answer. The noble metals are copper, silver, and gold.
2.3 What is the difference between primary and secondary bonding in the structure of materials?
Answer. Primary bonding is strong bonding between atoms in a material, for example to form a
M
molecule; while secondary bonding is not as strong and is associated with attraction between
molecules in the material.
2.4 Describe how ionic bonding works?
ED
Answer. In ionic bonding, atoms of one element give up their outer electron(s) to the atoms of
another element to form complete outer shells.
2.5 What is the difference between crystalline and noncrystalline structures in materials?
Answer. The atoms in a crystalline structure are located at regular and repeating lattice positions in
ST
three dimensions; thus, the crystal structure possesses a long-range order which allows a high
packing density. The atoms in a noncrystalline structure are randomly positioned in the material, not
possessing any repeating, regular pattern.
2.6 What are some common point defects in a crystal lattice structure?
Answer. Some of the common point defects are: (1) vacancy - a missing atom in the lattice
U
structure; (2) ion-pair vacancy (Schottky defect) - a missing pair of ions of opposite charge in a
compound; (3) interstitialcy - a distortion in the lattice caused by an extra atom present; and (4)
Frenkel defect - an ion is removed from a regular position in the lattice and inserted into an
D
interstitial position not normally occupied by such an ion.
2.7 Define the difference between elastic and plastic deformation in terms of the effect on the crystal
Y
lattice structure.
Answer. Elastic deformation involves a temporary distortion of the lattice structure that is
proportional to the applied stress. Plastic deformation involves a stress of sufficient magnitude to
cause a permanent shift in the relative positions of adjacent atoms in the lattice. Plastic deformation
generally involves the mechanism of slip - relative movement of atoms on opposite sides of a plane
in the lattice.
2.8 How do grain boundaries contribute to the strain hardening phenomenon in metals?
Answer. Grain boundaries block the continued movement of dislocations in the metal during
straining. As more dislocations become blocked, the metal becomes more difficult to deform; in
effect it becomes stronger.
2.9 Identify some materials that have a crystalline structure.
4