100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

A First Course in Differential Geometry (2019) – Woodward – Solutions Manual PDF

Puntuación
-
Vendido
-
Páginas
47
Grado
A+
Subido en
01-10-2025
Escrito en
2025/2026

INSTANT PDF DOWNLOAD. Complete solutions to exercises from A First Course in Differential Geometry: Surfaces in Euclidean Space by L. M. Woodward and J. Bolton. Covers all 9 chapters with step-by-step worked-out solutions, ideal for mastering the fundamentals of differential geometry and preparing for problem sets, assignments, and exams. differential geometry solutions manual, first course in differential geometry answers, woodward bolton geometry pdf solutions, surfaces in euclidean space problems solved, differential geometry chapter solutions, geometry exam prep pdf, solutions to geometry exercises, euclidean space geometry textbook answers, applied mathematics geometry problems solved, geometry assignments solved pdf, differential geometry student solutions manual, geometry course companion pdf, first course geometry practice solutions, geometry problems with answers pdf, advanced differential geometry solutions, mathematics geometry solved exercises, geometry problems step by step solutions, geometry textbook solutions pdf, woodward bolton differential geometry pdf, geometry study material with solutions

Mostrar más Leer menos
Institución
Aerospace
Grado
Aerospace











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Aerospace
Grado
Aerospace

Información del documento

Subido en
1 de octubre de 2025
Número de páginas
47
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ALL 9 CHAPTERS COVERED




Solutions to exercises

, 1

A FIRST COURSE IN DIFFERENTIAL GEOMETRY
Woodward and Bolton
Solutions to exercises
Chapter 1

1.1. A sketch of the astroid is given in Figure 1(a). It is clear that all
points in the image of α satisfy the equation of the astroid. Conversely, if
x2/3 + y 2/3 = 1, then there exists u ∈ R such that (x1/3 , y 1/3 ) = (cos u, sin u).
Thus every point of the astroid is in the image of α.
Trigonometric identities may be used to show that α′ = (3/2) sin 2u(− cos u, sin u),
which is zero only when u is an integer multiple of π/2. The corresponding points
of the astroid are the cusps in Figure 1(a).
The required length is

3 π/2 3
Z
sin 2u du = .
2 0 2




(a) Astroid (b) An epicycloid

Figure 1


1.2. A sketch of the trace of an epicycloid is given in Figure 1(b). Trigono-
metric identities may be used to show that

α′ = 4r sin(u/2) sin(3u/2), cos(3u/2) .
R 2π
So, for 0 ≤ u ≤ 2π, |α′ | = 4r sin(u/2), and required length is 4r 0
sin(u/2)du =
16r.

1.3. When r = 1, a calculation shows that α′ = tanh u sech u(sinh u, −1),
so that, for u ≥ 0, t = sech u(sinh u, −1). It follows that α + t = (u, 0). A
sketch of the trace of a tractrix is given in Figure 2(a).
2 2
1.4. Here, |α′ | = (1 + g ′ )1/2 and t = (1 + g ′ )−1/2 (1, g ′ ). Hence n =
2 2
(1 + g ′ )−1/2 (−g ′ , 1). A calculation shows that t′ = g ′′ (1 + g ′ )−3/2 (−g ′ , 1), so
that
dt 1 g ′′
= ′ t′ = n.
ds |α | (1 + g ′ 2 )3/2

,2 SOLUTIONS TO EXERCISES




Figure 2: (a) shows a tractrix and (b) shows three catenaries


2
Hence κ = g ′′ (1 + g ′ )−3/2 .
Taking x(u) = u, y(u) = g(u) in the formula given in Exercise 1.8 gives the
same formula for κ.

1.5. Use the method of Example 2 of §1.3. For u ≥ 0, |α′ | = tanh u and
t = (tanh u, −sech u). It follows that dt/ds = (|α′ |)−1 t′ = n/ sinh u. Hence
κ = cosech u.

1.6. EITHER: use Exercise 1.4 to show that the curvature of the catenary
α(u) = (u, cosh u) is given by κ = sech2 u,
OR: use the method of Example 2 of §1.3, and proceed as follows:-
α′ = (1, sinh u), so that |α′ | = cosh u and t = (sech u, tanh u). Hence n =
(−tanh u, sech u), and

dt 1 1 1
= ′ t′ = 2 (−tanh u, sech u) = n.
ds |α | cosh u cosh2 u

Hence κ = sech2 u. A sketch of the traces of three catenaries is given in Figure
2(b).

1.7. Differentiating with respect to u, we see that, using Serret-Frenet,

αℓ ′ = α′ + ℓn′ = |α′ |(t − κℓt) = |α′ |(1 − κℓ)t .

It follows that |αℓ ′ | = |α′ | |1 − κℓ| and tℓ = ǫt, where ǫ = (1 − κℓ)/|1 − κℓ|.
Hence nℓ = ǫn, so, if sℓ denotes arc length along αℓ , we have

dtℓ 1 ǫ
= ′ t′ = ′ t′ .
dsℓ |α | |1 − κℓ| ℓ |α | |1 − κℓ|

Using Serret-Frenet, t′ = |α′ |κn = |α′ |κǫnℓ , from which the result follows.
2 2
1.8. Since α′ = (x′ , y ′ ), we have that |α′ | = (x′ + y ′ )1/2 . Hence t =
2 2 2 2
(x , y ′ )/(x′ + y ′ )1/2 and n = (−y ′ , x′ )/(x′ + y ′ )1/2 . Hence




α′′ α′ (x′ x′′ + y ′ y ′′ )
t′ = 2 1/2 − ,
(x′ 2 +y )
′ (x′ 2 + y ′ 2 )3/2

, A FIRST COURSE IN DIFFERENTIAL GEOMETRY 3

and a short calculation shows that
dt 1 
′ ′′ ′ ′ ′′ ′ ′ ′′ ′′ ′

= ′2 2 y (x y − x y ), x (x y − x y )
ds (x + y ′ )2
x′ y ′′ − x′′ y ′
= ′2 n,
(x + y ′ 2 )3/2
and the result follows.

1.9. (i) Let sα be arc length along α measured from u = 0. Since α′ =
(1, sinh u) we see that dsα /du = |α′ | = cosh u. Hence sα (u) = sinh u and
tα = (sech u, tanh u). The result follows from formula (1.9) for the involute.
(ii) The evolute of α is given by
1
β =α+ nα .
κα
Here, we have (from Exercise 1.6) that κα = sech2 u and nα = (−tanh u, sech u).
A direct substitution gives the result.
A short calculation shows that β ′ = 0 if and only if u = 0, so this gives the
only singular point of β (where the curve β has a cusp). A sketch of the traces
of α and β is given in Figure 3.




Figure 3: A catenary and its evolute


1.10. Let sα denote arc length along α starting at u = u0 . Then, using
(1.9) and the notation used there, we see that

β ′ = α′ − sα ′ tα − sα tα ′ = −sα tα ′ .

It follows that β ′ = −sα |α′ |κα nα , so the only singular point of β is when
sα = 0, that is at u = u0 .

1.11. For ease, assume that κα > 0, and restrict attention to u0 < u1 < u.
Then, from (1.12), we have that κ0 = 1/s0 and κ1 = 1/s1 .
Let ℓ be the length of α measured from α(u0 ) to α(u1 ). Then ℓ = s0 −s1 > 0,
so the definition of involute gives that β 1 = β 0 + (s0 − s1 )tα = β 0 + ℓn0 . Hence
β 1 is a parallel curve to β 0 , and
κ0 1/s0 1 1
= = = = κ1 .
|1 − κ0 ℓ| |1 − ℓ/s0 | |s0 − ℓ| s1

1.12. A sketch of the trace of α is given in Figure 4.
$15.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TestBanksStuvia Chamberlain College Of Nursng
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2674
Miembro desde
2 año
Número de seguidores
1194
Documentos
1925
Última venta
5 horas hace
TESTBANKS &amp; SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3.9

287 reseñas

5
157
4
43
3
30
2
20
1
37

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes