100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

SOLUTION MANUAL First Course in Abstract Algebra A 8th Edition by John B. Fraleigh All Chapters Full Complete DR ERIC

Puntuación
-
Vendido
-
Páginas
36
Grado
A+
Subido en
18-06-2025
Escrito en
2024/2025

SOLUTION MANUAL First Course in Abstract Algebra A 8th Edition by John B. Fraleigh All Chapters Full Complete DR ERIC DR ERIC CONTENTS 1. Sets and Relations 1 I. Groups and Subgroups 2. Introduction and Examples 4 3. Binary Operations 7 4. Isomorphic Binary Structures 9 5. Groups 13 6. Subgroups 17 7. Cyclic Groups 21 8. Generators and Cayley Digraphs 24 II. Permutations, Cosets, and Direct Products 9. Groups of Permutations 26 10. Orbits, Cycles, and the Alternating Groups 30 11. Cosets and the Theorem of Lagrange 34 12. Direct Products and Finitely Generated Abelian Groups 37 13. Plane Isometries 42 III. Homomorphisms and Factor Groups 14. Homomorphisms 44 15. Factor Groups 49 16. Factor-Group Computations and Simple Groups 53 17. Group Action on a Set 58 18. Applications of G-Setsto Counting 61 IV. Rings and Fields 19. Rings and Fields 63 20. Integral Domains 68 21. Fermat’s and Euler’s Theorems 72 22. The Field of Quotients of an Integral Domain 74 23. Rings of Polynomials 76 24. Factorization of Polynomials over a Field 79 25. Noncommutative Examples 85 26. Ordered Rings and Fields 87 V. Ideals and Factor Rings 27. Homomorphisms and Factor Rings 89 28. Prime and Maximal Ideals 94 DR ERIC DR ERIC 29. Gro¨bner Basesfor Ideals 99 DR ERIC DR ERIC VI. Extension Fields 30. Introduction to Extension Fields 103 31. Vector Spaces 107 32. Algebraic Extensions 111 33. Geometric Constructions 115 34. Finite Fields 116 VII. Advanced Group Theory 35. IsomorphismTheorems 117 36. Series of Groups 119 37. Sylow Theorems 122 38. Applications of the Sylow Theory 124 39. Free Abelian Groups 128 40. Free Groups 130 41. Group Presentations 133 VIII. Groups in Topology 42. Simplicial Complexes and Homology Groups 136 43. Computations of Homology Groups 138 44. More Homology Computations and Applications 140 45. Homological Algebra 144 IX. Factorization 46. Unique Factorization Domains 148 47. Euclidean Domains 151 48. Gaussian Integers and Multiplicative Norms 154 X. Automorphisms and Galois Theory 49. Automorphisms of Fields 159 50. The Isomorphism Extension Theorem 164 51. Splitting Fields 165 52. Separable Extensions 167 53. Totally Inseparable Extensions 171 54. Galois Theory 173 55. Illustrations of Galois Theory 176 56. Cyclotomic Extensions 183 57. Insolvability of the Quintic 185 APPENDIX Matrix Algebra 187 iv DR ERIC DR ERIC − 0. Sets and Relations 1 1. Sets and Relations √ √ 1. { 3, − 3} 2. The set is empty. 3. {1,−1,2,−2,3, −3,4, −4,5,−5,6, −6,10,−10,12, −12,15,−15,20,−20,30,−30, 60, −60} 4. {−10,−9,−8,−7,−6,−5,−4,−3,−2,−1,0, 1,2,3,4, 5,6,7, 8,9, 10,11} 5. It is not a well-defined set. (Some may argue that no element of Z + is large, because every element exceeds only a finite number of other elements but is exceeded by an infinite number of other elements. Such people might claim the answer should be ∅.) 6. ∅ 7. The set is ∅ because 3 3 = 27 and 4 3 = 64. 8. It is not a well-defined set. 9. Q 10. The set containing all numbers that are (positive, negative, or zero) integer multiples of 1, 1/2, or 1/3. 11. {(a, 1), (a, 2), (a, c), (b, 1), (b, 2), (b, c), (c, 1), (c, 2), (c, c)} 12. a. It is a function. It is not one-to-one since there are two pairs with second member 4. It is not onto B because there is no pair with second member 2. b. (Same answer as Part(a).) c. It is not a function because there are two pairs with first member 1. d. It is a function. It is one-to-one. It is onto B because every element of B appears as second member ofsome pair. e. Itis a function. It is not one-to-one because there are two pairs with second member 6. It is not onto B because there is no pair with second member 2. f. It is not a function because there are two pairs with first member 2. 13. Draw the line through P and x, and let y be its point of intersection with the line segment CD. 14. a. φ : [0, 1] → [0, 2] where φ(x) = 2x b. φ : [1, 3] → [5, 25] where φ(x) = 5 + 10(x − 1) c. φ : [a, b] → [c, d] where φ(x) = c + d− c (x − a) b a 15. Let φ : S → R be defined by φ(x) = tan(π(x − ) 2 ). 16. a. ∅; cardinality 1 b. ∅,{a}; cardinality 2 c. ∅,{a},{b},{a, b}; cardinality 4 d. ∅,{a},{b},{c},{a, b},{a, c},{b, c},{a, b, c}; cardinality 8 17. Conjecture: |P(A)| = 2 s = 2| A|. Proof The number of subsets of a set A depends only on the cardinality of A, not on what the elements of A actually are. Suppose B = {1, 2, 3, · · · ,s − 1} and A = {1, 2, 3, ,s}. Then A has all the elements of B plus the one additional element s. All subsets of B are also subsets of A; these are precisely the subsets of A that do not contain s, so the number of subsets of A not containing s is |P(B)|. Any other subset of A must contain s, and removal of the s would produce a subset of B. Thus the number of subsets of A containing s is also |P(B)|. Because every subset of A either contains s or does not contain s (but not both), we see that the number of subsets of A is 2|P(B)|

Mostrar más Leer menos
Institución
Construcemen
Grado
Construcemen

Vista previa del contenido

DR ERIC




SOLUTION MANUAL
First Course in Abstract Algebra A
8th Edition by John B. Fraleigh
All Chapters Full Complete




DR ERIC

, DR ERIC




CONTENTS
1. Sets and Relations 1

I. Groups and Subgroups

2. Introduction and Examples 4
3. Binary Operations 7
4. Isomorphic Binary Structures 9
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
8. Generators and Cayley Digraphs 24

II. Permutations, Cosets, and Direct Products

9. Groups of Permutations 26
10. Orbits, Cycles, and the Alternating Groups
30
11. Cosets and the Theorem of Lagrange 34
12. Direct Products and Finitely Generated Abelian Groups 37
13. Plane Isometries 42

III. Homomorphisms and Factor Groups

14. Homomorphisms 44
15. Factor Groups 49
16. Factor-Group Computations and Simple Groups 53
17. Group Action on a Set 58
18. Applications of G-Sets to Counting 61

IV. Rings and Fields

19. Rings and Fields 63
20. Integral Domains 68
21. Fermat’s and Euler’s Theorems 72
22. The Field of Quotients of an Integral Domain 74
23. Rings of Polynomials 76
24. Factorization of Polynomials over a Field 79
25. Noncommutative Examples 85
26. Ordered Rings and Fields 87

V. Ideals and Factor Rings
DR ERIC
27. Homomorphisms and Factor Rings 89
28. Prime and Maximal Ideals 94

, DR ERIC




29. Gröbner Bases for Ideals 99




DR ERIC

, DR ERIC




VI. Extension Fields

30. Introduction to Extension Fields 103
31. Vector Spaces 107
32. Algebraic Extensions 111
33. Geometric Constructions 115
34. Finite Fields 116

VII. Advanced Group Theory

35. Isomorphism Theorems 117
36. Series of Groups 119
37. Sylow Theorems 122
38. Applications of the Sylow Theory 124
39. Free Abelian Groups 128
40. Free Groups 130
41. Group Presentations 133

VIII. Groups in Topology

42. Simplicial Complexes and Homology Groups 136
43. Computations of Homology Groups 138
44. More Homology Computations and Applications 140
45. Homological Algebra 144

IX. Factorization
46. Unique Factorization Domains 148
47. Euclidean Domains 151
48. Gaussian Integers and Multiplicative Norms 154

X. Automorphisms and Galois Theory
49. Automorphisms of Fields 159
50. The Isomorphism Extension Theorem 164
51. Splitting Fields 165
52. Separable Extensions 167
53. Totally Inseparable Extensions 171
54. Galois Theory 173
55. Illustrations of Galois Theory 176
56. Cyclotomic Extensions 183
57. Insolvability of the Quintic 185

APPENDIX Matrix Algebra 187

DR ERIC
iv

Escuela, estudio y materia

Institución
Construcemen
Grado
Construcemen

Información del documento

Subido en
18 de junio de 2025
Número de páginas
36
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

$11.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
DRERIC University Of Washington
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
18
Miembro desde
1 año
Número de seguidores
1
Documentos
1186
Última venta
22 horas hace
NURSING BUSINESS AND ENGINEERING

Assignments, Case Studies, Research, Essay writing service, Questions and Answers, Discussions etc. for students who want to see results twice as fast. I have done papers of various topics and complexities. I am punctual and always submit work on-deadline. I write engaging and informative content on all subjects. Send me your research papers, case studies, psychology papers, etc, and I’ll do them to the best of my abilities. Writing is my passion when it comes to academic work. I’ve got a good sense of structure and enjoy finding interesting ways to deliver information in any given paper. I love impressing clients with my work, and I am very punctual about deadlines. Send me your assignment and I’ll take it to the next level. I strive for my content to be of the highest quality. Your wishes come first— send me your requirements and I’ll make a piece of work with fresh ideas, consistent structure, and following the academic formatting rules. For every student you refer to me with an order that is completed and paid transparently, I will do one assignment for you, free of charge!!!!!!!!!!!! WELCOME TO MY STORE .I APPRECIATE YOU BEING HERE TO FIND THE QUALITY TEST BANKS AND EXAMS YOU NEED FOR THAT I SAY THANK YOU. EVERYTHING HERE IS QUALITY , WELL RESEARCHED AND VERIFIED WITH THE PROPER PRCING . BE ASSURED TO 100% PASS YOUR EXAMS . REMEBER YOU CAN RATE MY DOCUMENTS .THANK YOU AGAIN FOR BEING HERE

Lee mas Leer menos
3.5

4 reseñas

5
2
4
0
3
1
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes