100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

MATH 225 Week 3 Test SUMMER 2025

Puntuación
-
Vendido
-
Páginas
8
Grado
A
Subido en
21-05-2025
Escrito en
2024/2025

Find the derivative of:f(x)=x3(3x2)2Find the derivative of:f(x)=x3(3x2)2 f′(x)=−19x2f′(x)=−19x2 f′(x)=(3x2)⋅3x2−x3⋅6x(3x2)2f′(x)=(3x2)⋅3x2−x3⋅6x(3x2)2 f′(x)=−13x2f′(x)=−13x2 f′(x)=(3x2)2⋅3x2+x3⋅2(3x2)(6x)(3x2)4f′(x)=(3x2)2⋅3x2+x3⋅2(3x2)(6x)(3x2)4 To find the derivative, use the quotient rule.f′(x)=(3x2)2⋅3x2−x3⋅2(3x2)(6x)(3x2)4This equation may be simplified tof′ (x)=27x6−36x634x8=32x6(3−4)32x6⋅32x2.The reduced answer is much simpler.f′(x)=−19x2Notice that you could have s implified andreduced this function for your first step.Then the solution could be found usingonly the power rule.To fin d the derivative, use the quotient rule.f′(x)=(3x2)2⋅3x2−x3⋅2(3x2)(6x)(3x2)4This equation may be simplified tof′ (x)=27x6−36x634x8=32x6(3−4)32x6⋅32x2.The reduced answer is much simpler.f′(x)=−19x2Notice that you could have si mplified andreduced this function for your first step.Then the solution could be found usingonly the power rule. 5 / 5 Question 3 : 5 ptsSkip to question text. Find the derivative.f(x)=3(4x+7)4−4(3x+7)3Find the derivative.f(x)=3(4x+7)4−4(3x+7)3 f′(x)=12(4x+7)3−12(3x+7)2f′(x)=12(4x+7)3−12(3x+7)2 f′(x)=48(4x+7)3⋅36(3x+7)2f′(x)=48(4x+7)3⋅36(3x+7)2 f′(x)=12(4x+7)3⋅12(3x+7)2f′(x)=12(4x+7)3⋅12(3x+7)2 f′(x)=48(4x+7)3−36(3x+7)2f′(x)=48(4x+7)3−36(3x+7)2 To find the derivative, consider each piece separated by a plus or minus sign as its own problem. So 3(4x + 7)4 is one problem and −4(3x + 7)3 is the other. To solve the first piece, multiply the 3 by the exponent (which is 4) and then reduce the exponent by 1. Then multiply all of that by the derivative of what is inside the parentheses. This gives you 48(4x + 7)3.

Mostrar más Leer menos
Institución
MATH 225
Grado
MATH 225









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
MATH 225
Grado
MATH 225

Información del documento

Subido en
21 de mayo de 2025
Número de páginas
8
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Week 3 Test - Grade: 85%
Instructions:
This Test may be printed by clicking the Print icon at the top of the Test window AFTER starting the Test.

We suggest you work out the answers on the printed Test, then submit your answers online.

THIS IS A TIMED TEST. YOU HAVE 3 HOURS TO COMPLETE THE TEST ONCE YOU CLICK "START." You can start and stop the Test if you
need to; however, the time will continue to elapse. You can also skip questions and go back to them as needed during the test. Use the 'skip'
button to skip a question and question navigation pull-down menu to jump back to any questions you skipped.
Once you have completed the Test online, click “Submit Answers.” Your answers will be scored and the answer key with step-by-step
solutions will become available.
Questions? Reach out to us at . We’re here and happy to help.



Questions Limits Points Due Date


20 Questions 180 Minutes 100 pts possible No due date.




Attempt 1 85% (85 of 100) Completed on 03/23/25 at 07:18PM
Score for this quiz: 85% ( 85 /100)
Submitted Mar 23 at 7:18pm
This attempt took 35 minutes.

Question 1 : 5 ptsSuppose f (x) = ln x2. Find f '(x).
Suppose f (x) = ln x2. Find f '(x).
f ' (x) = 2xlnx2
f′(x)=1xf′(x)=1x f′
(x)=2xf′(x)=2x f′
(x)=1x2f′(x)=1x2
Use a property of logarithms torewrite the function. Then,find the derivative.f(x)=lnx2=2lnxf′(x)=2xUse a property of l
ogarithms torewrite the function. Then,find the derivative.f(x)=lnx2=2lnxf′(x)=2x
5/5


Question 2 : 5 ptsSkip to question text.

, Find the derivative of:f(x)=x3(3x2)2Find the derivative of:f(x)=x3(3x2)2 f′
(x)=−19x2f′(x)=−19x2 f′(x)=(3x2)⋅3x2−x3⋅6x(3x2)2f′
(x)=(3x2)⋅3x2−x3⋅6x(3x2)2 f′(x)=−13x2f′(x)=−13x2 f′
(x)=(3x2)2⋅3x2+x3⋅2(3x2)(6x)(3x2)4f′(x)=(3x2)2⋅3x2+x3⋅2(3x2)(6x)(3x2)4
To find the derivative, use the quotient rule.f′(x)=(3x2)2⋅3x2−x3⋅2(3x2)(6x)(3x2)4This equation may be simplified tof′
(x)=27x6−36x634x8=32x6(3−4)32x6⋅32x2.The reduced answer is much simpler.f′(x)=−19x2Notice that you could have s
implified andreduced this function for your first step.Then the solution could be found usingonly the power rule.To fin
d the derivative, use the quotient rule.f′(x)=(3x2)2 ⋅3x2−x3 ⋅2(3x2)(6x)(3x2)4This equation may be simplified tof′
(x)=27x6−36x634x8=32x6(3−4)32x6⋅32x2.The reduced answer is much simpler.f′(x)=−19x2Notice that you could have si
mplified andreduced this function for your first step.Then the solution could be found usingonly the power rule.
5/5


Question 3 : 5 ptsSkip to question text.
Find the derivative.f(x)=3(4x+7)4−4(3x+7)3Find the derivative.f(x)=3(4x+7)4−4(3x+7)3
f′(x)=12(4x+7)3−12(3x+7)2f′(x)=12(4x+7)3−12(3x+7)2 f′(x)=48(4x+7)3⋅36(3x+7)2f′
(x)=48(4x+7)3⋅36(3x+7)2 f′(x)=12(4x+7)3⋅12(3x+7)2f′(x)=12(4x+7)3⋅12(3x+7)2 f′
(x)=48(4x+7)3−36(3x+7)2f′(x)=48(4x+7)3−36(3x+7)2
To find the derivative, consider each piece separated by a plus or minus sign as its own problem.

So 3(4x + 7)4 is one problem and −4(3x + 7)3 is the other.

To solve the first piece, multiply the 3 by the exponent (which is 4) and then reduce the exponent by 1. Then multiply all of that by the derivative of
what is inside the parentheses. This gives you 48(4x + 7)3.

To solve the other piece, multiply the −4 by the exponent (which is 3) and then reduce the exponent by 1. Then multiply all of that by the derivative
of what is inside the parentheses. This gives you −36(3x + 7)2.
0/5


Question 4 : 5 ptsSkip to question text.
Find the derivative.f(x)=(3x2+7x)4(2x3−6x)3Find the derivative.f(x)=(3x2+7x)4(2x3−6x)3 f′(x)=4(2x3−6x)3(3x2+7x)3(6x+7)
(2x3−6x)6+3(3x2+7x)4(2x3−6x)2(6x2−6)(2x3−6x)6f′(x)=4(2x3−6x)3(3x2+7x)3(6x+7) (2x3−6x)6+3(3x2+7x)4(2x3−6x)2(6x2−6)
(2x3−6x)6 f′(x)=4(2x3−6x)3(3x2+7x)3(6x+7)−3(3x2+7x)4(2x3−6x)2(6x2−6)f′
(x)=4(2x3−6x)3(3x2+7x)3(6x+7)−3(3x2+7x)4(2x3−6x)2(6x2−6) f′(x)=4(2x3−6x)3(3x2+7x)3(6x+7)
(2x3−6x)6−3(3x2+7x)4(2x3−6x)2(6x2−6)(2x3−6x)6f′(x)=4(2x3−6x)3(3x2+7x)3(6x+7) (2x3−6x)6−3(3x2+7x)4(2x3−6x)2(6x2−6)
(2x3−6x)6
$28.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Oldspice Portage Learning
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1187
Miembro desde
5 año
Número de seguidores
866
Documentos
3594
Última venta
1 día hace
999

Lemme help you murder that paper :) Nursing, Math, Biology, Anatomy etc

3.9

207 reseñas

5
103
4
42
3
30
2
9
1
23

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes