100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solutions for Continuum Mechanics for Engineers, 4th Edition by Mase (All Chapters included)

Puntuación
-
Vendido
4
Páginas
232
Grado
A+
Subido en
30-10-2024
Escrito en
2020/2021

Complete Solutions Manual for Continuum Mechanics for Engineers, 4th Edition by G. Thomas Mase; Ronald E. Smelser; Jenn Stroud Rossmann ; ISBN13: 9781482238686...1.Continuum Theory. 2.Essential Mathematics. 3.Stress Principles. 4.Kinematics of Deformation and Motion. 5.Fundamental Laws and Equations. 6.Linear Elasticity. 7.Classical Fluids. 8.Nonlinear Elasticity. 9.Linear Viscoelasticity. 10.Plasticity.

Mostrar más Leer menos
Institución
Engineering Technology
Grado
Engineering technology











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Engineering technology
Grado
Engineering technology

Información del documento

Subido en
30 de octubre de 2024
Número de páginas
232
Escrito en
2020/2021
Tipo
Examen
Contiene
Preguntas y respuestas

Vista previa del contenido

2

solutions for



Continuum Mechanics for Engineers




Fourth Edition




G. Thomas Mase
Ronald E. Smelser
Jenn Stroud Rossmann




** Immediate Download
** Swift Response

,Chapter 2 Solutions



Problem 2.1
Let v = a × b, or in indicial notation,
vi e ^j × bk e
^i = aj e ^k = εijk aj bk e
^i

Using indicial notation, show that,
(a) v · v = a2 b2 sin2 θ ,
(b) a × b · a = 0 ,
(c) a × b · b = 0 .

Solution
(a) For the given vector, we have
v · v = εijk aj bk e
^i · εpqs aq bs e
^p = εijk aj bk εpqs aq bs δip = εijk aj bk εiqs aq bs
= (δjq δks − δjs δkq ) aj bk aq bs = aj aj bk bk − aj bk ak bj
= (a · a) (b · b) − (a · b) (a · b) = a2 b2 − (ab cos θ)2
= a2 b2 1 − cos2 θ = a2 b2 sin2 θ


(b) Again, we find
a × b · a = v · a = (εijk aj bk e
^i ) · aq e
^q = εijk aj bk aq δiq = εijk aj bk ai = 0

This is zero by symmetry in i and j.
(c) This is
a × b · b = v · b = (εijk aj bk e
^i ) · bq e
^q = εijk aj bk bq δiq = εijk aj bk bi = 0

Again, this is zero by symmetry in k and and i.



Problem 2.2
With respect to the triad of base vectors u1 , u2 , and u3 (not necessarily unit vectors), the
triad u1 ,u2 , and u3 is said to be a reciprocal basis if ui · uj = δij (i, j = 1, 2, 3). Show that
to satisfy these conditions,
u2 × u3 u3 × u1 u1 × u2
u1 = ; u2 = ; u3 =
[u1 , u2 , u3 ] [u1 , u2 , u3 ] [u1 , u2 , u3 ]
and determine the reciprocal basis for the specific base vectors
u1 ^2 ,
e1 + e
= 2^
u2 ^3 ,
e2 − e
= 2^
u3 ^1 + e
= e ^2 + e^3 .


3

,4 Continuum Mechanics for Engineers

Answer
1
u1 = 5
(3^ ^2 − 2^
e1 − e e3 )
1
u2 = 5 e1 + 2^
(−^ ^3 )
e2 − e
1
u3 = 5 e1 + 2^
(−^ e2 + 4^
e3 )

Solution
For the bases, we have
u2 × u3 u3 × u1 u1 × u2
u1 ·u1 = u1 · = 1; u2 ·u2 = u2 · = 1; u3 ·u3 = u3 · =1
[u1 , u2 , u3 ] [u1 , u2 , u3 ] [u1 , u2 , u3 ]
since the triple scalar product is insensitive to the order of the operations. Now
u2 × u3
u2 · u1 = u2 · =0
[u1 , u2 , u3 ]
since u2 ·u2 ×u3 = 0 from Pb 2.1. Similarly, u3 ·u1 = u1 ·u2 = u3 ·u2 = u1 ·u3 = u2 ·u3 = 0.
For the given vectors, we have

2 1 0
[u1 , u2 , u3 ] = 0 2 −1 =5
1 1 1
and
^1
e ^2
e ^3
e
1
u2 × u3 = 0 2 −1 ^2 − 2^
e1 − e
= 3^ e3 ; u1 = ^2 − 2^
e1 − e
(3^ e3 )
1 1 1 5

^1
e ^2
e ^3
e
1
u3 × u1 = 1 1 1 e1 + 2^
= −^ ^3 ;
e2 − e u2 = e1 + 2^
(−^ ^3 )
e2 − e
2 1 0 5

^1
e ^2
e ^3
e
1
u1 × u2 = 2 1 0 e1 + 2^
= −^ e2 + 4^
e3 ; u3 = e1 + 2^
(−^ e2 + 4^
e3 )
0 2 −1 5




Problem 2.3
If the base vectors u1 , u2 , and u3 are eigenvectors of a tensor A , prove that the reciprocal
basis vectors u1 , u2 , and u3 are eigenvectors of the tensor’s transpose, AT .



Problem 2.4
If the base vectors u1 , u2 , and u3 form an orthonormal triad, prove that nk nk = I where
I is the identity matrix.



Problem 2.5
^i , and let b = bi e
Let the position vector of an arbitrary point P (x1 x2 x3 ) be x = xi e ^i be
a constant vector. Show that (x − b) · x = 0 is the vector equation of a spherical surface
having its center at x = 21 b with a radius of 21 b.

, Chapter 2 Solutions 5

Solution
For

(x − b) · x = (xi e ^i ) · xj e
^i − bi e ^j = (xi xj − bi xj ) δij = xi xi − bi xi =
= x21 + x22 + x23 − b1 x1 − b2 x2 − b3 x3 = 0

Now
 2  2  2
1 1 1 1 2  1
x1 − b1 + x2 − b2 + x3 − b3 = b + b22 + b23 = b2
2 2 2 4 1 4

This is the equation of a sphere with the desired properties.



Problem 2.6
Using the notations A(ij) = 12 (Aij + Aji ) and A[ij] = 21 (Aij − Aji ) show that

(a) the tensor A having components Aij can always be decomposed into a sum of
its symmetric A(ij) and skew-symmetric A[ij] parts, respectively, by the decom-
position,
Aij = A(ij) + A[ij] ,

(b) the trace of A is expressed in terms of A(ij) by

Aii = A(ii) ,

(c) for arbitrary tensors A and B,

Aij Bij = A(ij) B(ij) + A[ij] B[ij] .


Solution
(a) The components can be written as
   
Aij + Aji Aij − Aji
Aij = + = A(ij) + A[ij]
2 2

(b) The trace of A is  
Aii + Aii
A(ii) = = Aii
2
(c) For two arbitrary tensors, we have
 
Aij Bij = A(ij) + A[ij] B(ij) + B[ij] = A(ij) B(ij) + A[ij] B(ij) + A(ij) B[ij] + A[ij] B[ij]
= A(ij) B(ij) + A[ij] B[ij]

since the product of a symmetric and skew-symmetric tensor is zero
  
Aij + Aji Bij − Bji 1
A(ij) B[ij] = = (Aij Bij + Aji Bij − Aij Bji − Aji Bji )
2 2 4
1
= (Aij Bij + Aji Bij − Aji Bij − Aij Bij ) = 0
4
$29.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
mizhouubcca Business Hub
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2494
Miembro desde
2 año
Número de seguidores
360
Documentos
1602
Última venta
1 hora hace

4.3

438 reseñas

5
281
4
75
3
39
2
14
1
29

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes