100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solution Manual for Stochastic Processes With R An Introduction 1st edition by Olga Korosteleva

Puntuación
5.0
(1)
Vendido
1
Páginas
30
Grado
A+
Subido en
11-01-2026
Escrito en
2025/2026

Solution Manual for Stochastic Processes with R: An Introduction (1st Edition by Olga Korosteleva) – Complete Step-by-Step Solutions Solution Manual for Stochastic Processes with R: An Introduction (1st Edition by Olga Korosteleva) – Complete Step-by-Step Solutions Solution Manual for Stochastic Processes with R: An Introduction (1st Edition by Olga Korosteleva) – Complete Step-by-Step Solutions Solution Manual for Stochastic Processes with R: An Introduction (1st Edition by Olga Korosteleva) – Complete Step-by-Step Solutions

Mostrar más Leer menos
Institución
Personal Financial Planning
Grado
Personal Financial Planning

















Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Personal Financial Planning
Grado
Personal Financial Planning

Información del documento

Subido en
11 de enero de 2026
Número de páginas
30
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ALL 9 CHAPTER COVERED




SOLUTIONS MANUAL

, TABLE OF CONTENTS
CHAPTER 1 ……………………………………………………………………………………. 3
CHAPTER 2 ……………………………………………………………………………………. 31
CHAPTER 3 ……………………………………………………………………………………. 41
CHAPTER 4 ……………………………………………………………………………………. 48
CHAPTER 5 ……………………………………………………………………………………. 60
CHAPTER 6 ……………………………………………………………………………………. 67
CHAPTER 7 ……………………………………………………………………………………. 74
CHAPTER 8 ……………………………………………………………………………………. 81
CHAPTER 9 ……………………………………………………………………………………. 87




2

, CHAPTER 1
0.3 0 . 4 0 . 3
EXERCISE 1.1. For a Markov chain with a one-step transition probability matrix �0.2 0.3 0.5 �
0.8 0 . 1 0 . 1
We compute:

(a) 𝑃𝑃 (𝑋𝑋3 = 2 |𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3) = 𝑃𝑃 (𝑋𝑋3 = 2 | 𝑋𝑋2 = 3) (by the Markov property)
= 𝑃𝑃32 = 0.1.
(b) 𝑃𝑃 (𝑋𝑋4 = 3 |𝑋𝑋0 = 2, 𝑋𝑋3 = 1) = 𝑃𝑃 (𝑋𝑋4 = 3 | 𝑋𝑋3 = 1) (by the Markov property)
= 𝑃𝑃13 = 0.3.
(c) 𝑃𝑃 (𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3, 𝑋𝑋3 = 1) = 𝑃𝑃 (𝑋𝑋3 = 1 | 𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3) 𝑃𝑃 (𝑋𝑋2 = 3 |𝑋𝑋0 = 1,
𝑋𝑋1 = 2) 𝑃𝑃 (𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃 (𝑋𝑋0 = 1) (by conditioning)
= 𝑃𝑃 (𝑋𝑋3 = 1 | 𝑋𝑋2 = 3) 𝑃𝑃 (𝑋𝑋2 = 3 | 𝑋𝑋1 = 2) 𝑃𝑃 (𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃 (𝑋𝑋0 = 1) (by the Markov property)

= 𝑃𝑃31 𝑃𝑃23 𝑃𝑃12 𝑃𝑃 (𝑋𝑋0 = 1) = (0.8) (0.5) (0.4) (1) = 0.16.
(d) We first compute the two-step transition probability matrix. We obtain

0.3 0 . 4 0 . 3
0.3 0 . 4 0.41 0.27 0.32
0.3
𝐏𝐏 = �
(2)
0.2 0.3 0.5 ��0.2 0.3 0.5 �= � 0.52 0.22 0.26�
.

Now we write 0.8 0 . 1 0.8 0 . 1 0.34 0.36 0.30

0.1 0.1
𝑃𝑃 (𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋3 = 3, 𝑋𝑋5 = 1) = 𝑃𝑃 (𝑋𝑋5 = 1 | 𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋3 = 3) 𝑃𝑃 (𝑋𝑋3 = 3 |𝑋𝑋0 = 1,
𝑋𝑋1 = 2) 𝑃𝑃 (𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃 (𝑋𝑋0 = 1) (by conditioning)
= 𝑃𝑃 (𝑋𝑋5 = 1 | 𝑋𝑋3 = 3) 𝑃𝑃 (𝑋𝑋3 = 3 | 𝑋𝑋1 = 2) 𝑃𝑃 (𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃 (𝑋𝑋0 = 1) (by the Markov property)
(2) (2) 𝑃𝑃(𝑋𝑋 = 1) = (0.34) (0.26) (0.4) (1) = 0.03536.
𝑃𝑃

= 𝑃𝑃31 𝑃𝑃23 12 0

EXERCISE 1.2. (a) We plot a diagram of the Markov chain.

#specifying transition probability matrix
Tm<- matrix(c (1, 0, 0, 0, 0, 0.5, 0, 0, 0, 0.5, 0.2, 0, 0, 0, 0.8,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0), now=5, ndo=5, brow=TRUE)

#transposing transition probability matrix
tm.tr<- t(tm)

#plotting diagram library
(diagram)
Plot mat (tm.tr, arr.length=0.25, arr.width=0.1, box.col="light blue",
box.lwd=1, box. Prop=0.5, box. Size=0.12, box. Type="circle", cex.txt=0.8,
lewd=1, self.cex=0.3, self.shiftx=0.01, self. Shifty=0.09)




3

,State 2 is reflective. The chain leaves that state in one step. Therefore, it forms a separate transient
class that has an infinite period.

Finally, states 3, 4, and 5 communicate and thus belong to the same class. The chain can return to
either state in this class in 3, 6, 9, etc. steps, thus the period is equal to 3. Since there is a positive
probability to leave this class, it is transient.

The R output supports these findings.

#creating Markov chain object library
(markovchain)
Mc<- new ("markovchain", transition Matrix=tm, states=c ("1", "2", "3", "4", "5"))

#computing Markov chain characteristics recurrent
Classes (mc)

"1"

Transient Classes (mc)

"2"
"3" "4" "5"

Absorbing States (mc)

"1"

(c) Below we simulate three trajectories of the chain that start at a randomly chosen state.
4

,#specifying total number of steps
steps<- 25

#specifying seed set. Seed
(4955145)

#specifying initial probability
p0<- c (0.2, 0.2, 0.2, 0.2,
0.2)

#specifying matrix containing states
MC.states<- matrix (NA, now=steps, ndo=3)

#simulating states
for (I in 1:3) {
state0<- state0<- sample (1:5, 1, probe=p0)
MC.states [, I] <- rmarkovchain (n=nsteps-1, object=mc, t0=state0,
include.t0=TRUE)
}

#plotting simulated trajectories
Mat plot (MC.states, type="l", lay=1, lewd=2, col=2:4, at="n", slim=c (1, 5),
lab="Step", lab="State", panel. First=grid ())

Axis (side=1, at=c (1, 5, 10, 15, 20, 25))

points(1:nsteps, MC.states[,1], picha=16,
col=2) points(1:nsteps, MC.states[,2],
picha=16, col=3) points(1:nsteps,
MC.states[,3], picha=16, col=4)




Since state 1 is an absorbing state, sooner or later, the trajectories transition into this state and don’t
leave it.


(d) To find the steady-state probabilities, we need to solve the following equations:


5

, 10 0 0 0


(𝜋𝜋1, 𝜋𝜋2, 𝜋𝜋3, 𝜋𝜋4, 𝜋𝜋5) = (𝜋𝜋1, 𝜋𝜋2, 𝜋𝜋3, 𝜋𝜋4, 𝜋𝜋5) ⎡0.2 5 ⎤ , with the additional condition
0.5 00 000 00 .0.8
⎢ 0 0 1 0 0 ⎥
𝜋𝜋01 = 𝜋𝜋1 + 0.5𝜋𝜋2 + 0.2𝜋𝜋3
𝜋𝜋2 = . It has the degenerate solution
that 𝜋𝜋1 + 𝜋𝜋
Written 2 +the
out, 𝜋𝜋3system
+ 𝜋𝜋4 +becomes
𝜋𝜋5 = 1. � ⎣ 0 0 0 1 0 ⎦
𝜋𝜋3 = 𝜋𝜋4 = 𝜋𝜋5 = 0
𝜋𝜋1 + 𝜋𝜋2 + 𝜋𝜋3 + �𝜋4 + 𝜋𝜋5 = 1
𝜋𝜋1 = 1, 𝜋𝜋2 = 𝜋𝜋3 = 𝜋𝜋4 = 𝜋𝜋5 = 0. This solution is expected because state 1 is an absorbing state, and
So the chain ends up spending 100% of the time there. Having a unique stationary distribution, it is an
Ergodic Markov chain.

Using R, we obtain: steady

States (mc)

1 2 3 4 5
1 0 0 0 0



(e) Here we plot the unconditional probabilities at time 𝑛𝑛 against the time.
#specifying total number of steps
Steps<- 70

#specifying matrix containing probabilities
probes<- matrix (NA, now=steps, ndo=5)

#computing probabilities probes
[1,] <- p0
For (n in 2: nsteps)
Probes [n,] <- probes [n-1,] %*%tm

#plotting probabilities vs. step by state
Mat plot (probes, type="l", lay=1, lewd=2, col=1:5, slim=c (-0.1,
1.1), lab="Step", lab="Probability", panel. First=grid ())

legend("right", c("State 1", "State 2", "State 3", "State4", "State5"), lay=1,
lewd=2, col=1:5)




6

,EXERCISE 1.3. (a) We plot a diagram of the Markov chain.
#specifying transition probability matrix
tm<- matrix(c(0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4,0.2,0.2,0.2,
0,0,0,0,0.2,0.4,0.4,0.3,0,0,0.1,0.3,0.1,0.2,0,0,0,0.2,0.2,0.3,0.3,
0, 0, 0, 0.5, 0.2, 0.2, 0.1), now=7, ndo=7, brow=TRUE)

#transposing transition probability matrix
tm.tr<- t(tm)

#plotting diagram library
(diagram)
Plot mat (tm.tr, arr.length=0.3, arr.width=0.1, arroyos=0.58, box.col="light
blue", box.lwd=1, box. Prop=0.5, box. Size=0.09, box. Type="circle", cex.txt=0.8,
lewd=1, self.cex=0.3, self.shiftx=-0.07, self. Shifty=-0.05)




7

,(b) States 1 and 2 form a class and it is recurrent. The period is 2. Once the chain transitions into this
class, it never leaves it and will bounce between the two states.

State 3 is reflecting. The chain leaves this state in one step. This state forms a class of its own. It is a
transient class and its period is infinite.

States 4, 5, 6, and 7 communicate and thus form a class. Its period is one because of the loops.
This class is transient because with positive probability the chain can leave this state and transition
into the {1, 2} class.

From R, we obtain:

#creating Markov chain object library
(markovchain)
Mc<- new ("markovchain", transition Matrix=tm, states=c ("1", "2", "3", "4", "5",
"6", "7"))

#computing Markov chain characteristics recurrent
Classes (mc)

"1" "2"

Transient Classes (mc)

"3"
"4" "5" "6" "7"

Absorbing States (mc)
Character (0)

#creating irreducible Markov chain objects
tm.ir<- matrix(c (0, 1, 1, 0), now=2, ndo=2, brow=TRUE)
mc.ir<-new ("markovchain", transition Matrix=tm.ir, states=c ("1","2"))


8

,#finding periods of irreducible Markov chains
period (mc.ir)

2

(c) Below we simulate two trajectories of the chain that start at a randomly selected state.

#specifying total number of steps
steps<- 25

#specifying seed set. Seed
(3339964)

#specifying initial probability
p0<- c (1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7)

#specifying matrix containing states
MC.states<- matrix (NA, now=steps, ndo=2)

#simulating states
for (I in 1:2) {
state0<- sample (1:7, 1, probe=p0)
MC.states [, I] <- rmarkovchain (n=nsteps-1, object=mc, t0=state0,
include.t0=TRUE)
}

#plotting simulated trajectories
Mat plot (MC.states, type="l", lay=1, lewd=2, col=3:4, slim=c (1, 7), at="n",
lab="Step", lab="State", panel. First=grid ())

Axis (side=1, at=c (1, 5, 10, 15, 20, 25))

Points (1: nsteps, MC.states [, 1], picha=16,
col=3) points (1: nsteps, MC.states [, 2],
picha=16, col=4)




Both simulated trajectories transition to the class {1, 2} sooner or later.

(d) Below we calculate the limiting probabilities.
9

, In R:

#finding steady-state distribution round
(steady States (mc), digits=4)

1 2 3 4 5 6 7
0.5 0.5 0 0 0 0 0

There is a single limiting distribution which means that the chain is ergodic. States 1 and 2 absorb the
chain and then the chain spends 50% of the time in state 1 and the other 50%, in state 2.


(e) Here we plot the unconditional probability vectors 𝑝𝑝𝑛𝑛 against 𝑛𝑛.
#specifying total number of steps
Steps<- 60

#specifying matrix containing probabilities
probes<- matrix (NA, now=steps, ndo=7)

#computing probabilities probes
[1,] <- p0
For (n in 2: nsteps)
Probes [n,] <- probes [n-1,] %*%tm

#plotting probabilities vs. step by state
Mat plot (probes, type="l", lay=1, lewd=2, col=1:7, slim=c (-0.05,
0.6), lab="Step", lab="Probability", panel. First=grid ())

legend("right", c("State 1","State 2","State 3","State 4","State 5","State 6",
"State 7"), lay=1, lewd=2, col=1:7)state 2","state 3","state 4","state
5","state 6", "state 7"), lay=1, col=1:7)




For state 1 and 2 the probabilities converge to 0.5, whereas for all the other states, the probabilities
converge to zero. The curves settle around step 50.


10
$37.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los comentarios
5 días hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
LECTJULIESOLUTIONS Havard School
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
14
Miembro desde
1 año
Número de seguidores
1
Documentos
451
Última venta
1 semana hace
JULIESOLUTIONS ALL STUDY GUIDES

You will get solutions to all subjects in both assignments and major exams. Contact me for any assisstance. Good luck! Simple well-researched education material for you. Expertise in Nursing, Mathematics, Psychology, Biology etc,. My Work contains the latest, updated Exam Solutions, Study Guides, Notes 100% verified Guarantee .

5.0

4 reseñas

5
4
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes