100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Samenvatting Statistiek II week 1 tm 3

Bewertung
-
Verkauft
-
seiten
17
Hochgeladen auf
22-02-2021
geschrieben in
2020/2021

Volledige samenvatting van alle stof van week 1-3 van statistiek II uit de bachelor criminologie. Incl oefenvragen en antwoorden. Samenvatting van week 4-7 zal apart worden geupload.

Hochschule
Kurs










Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Verknüpftes buch

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Gesamtes Buch?
Ja
Hochgeladen auf
22. februar 2021
Datei zuletzt aktualisiert am
23. februar 2021
Anzahl der Seiten
17
geschrieben in
2020/2021
Typ
Zusammenfassung

Themen

Inhaltsvorschau

Statistiek II
Week 1

Stappen
1. Verwachtingen opstellen in de vorm van hypothesen
2. Kiezen geschikte maat en bereken resultaat voor de steekproef
3. Toetsen hoe toevallig het steekproef resultaat is wanneer we ervan uitgaan dat de
nulhypothese waar is
4. Conclusie trekken → geeft het steekproef resultaat aanleiding om de verwachtingen, de
nulhypothese, over de populatie bij te stellen?

Statistiek 1:
- One sample t-toets: één steekproefgemiddelde
- Paired-samples t-toets = voor- en nameting in één groep (t-toets voor afhankelijke steekproeven)

Statistiek 2:
Stel je bent geïnteresseerd in het verschil in gemiddelde recidive tussen twee groepen daders, de ene
groep daders heeft een vrijheidsstraf gekregen en de andere groep elektronische detectie. Er is geen
sprake van een voor- en nameting want je vergelijkt twee verschillende groepen, ook wel
onafhankelijke steekproef genoemd. De scores in de ene groep en de scores in de andere groep zijn
afkomstig van verschillende personen en daarom onafhankelijk van elkaar. We gaan ervan uit dat
beide groepen als aselecte steekproef uit de populatie van daders zijn getrokken. Het vergelijken van
de twee groepen op basis van het gemiddelde vraagt dus om een andere t-toets dan die van
statistiek 1. Je gebruikt hier de independent samples t-toets.

Onafhankelijke steekproeven kun je op twee manieren selecteren:
1. Uit één populatie
2. Uit twee populaties

1. Onafhankelijke steekproeven uit één populatie:
- Trek steekproef (n personen)
- Verdeel proefpersonen at random over twee groepen
- Geef elke groep zijn eigen interventie
- Meet het gemiddelde voor elke groep
- Toets het verschil tussen de gemiddelden

,Wat betekend nu een eventueel verschil?
Een eventueel verschil in het gemiddelde aantal recidive delicten in beide groepen kan groot zijn,
klein zijn of totaal afwezig zijn. Het verschil kan positief of negatief zijn. Maar wanneer is het verschil
significant? Significant betekend dat het verschil in gemiddelden niet beschouwd wordt als een
toevalligheid, wat je bij kleine verschillen logischerwijs eerder zou doen → het verschil is substantieel
genoeg om toe te wijzen aan de condities. Het verschil is dan een effect van de interventie; door de
random toewijzing zijn er geen andere kenmerken die met de toewijzing aan de twee groepen
samenhangen.

2. Onafhankelijke steekproeven uit twee populaties:
- Trek 2 steekproeven, één uit elke populatie
- Meet het gemiddelde voor elke groep
- Toets het verschil tussen de gemiddelden

Voorbeeld: we trekken een steekproef vrouwen uit de Nederlandse vrouwelijke bevolking en een
steekproef mannen uit de Nederlandse mannelijke bevolking. Als je dan vervolgens voor iedereen
het aantal politiecontacten tussen de leeftijd 12 en 18 jaar telt, kunnen we het gemiddelde aantal
politiecontacten tussen de twee groepen vergelijken. De verwachting is hierbij dat mannen
gemiddeld meer delicten plegen dan vrouwen. Met de t-toets voor onafhankelijke steekproeven
kunnen we toetsen of het verschil significant is.




Ook hier geldt dat significant betekend dat het verschil in de gemiddelde niet wordt beschouwd als
een toevalligheid, maar dat het verschil substantieel genoeg is om het toe te schrijven aan de
verschillende populaties. Bij een significant verschil concluderen we dus dat de
populatiegemiddelden, die we dus eigenlijk niet kennen maar waarvan de steekproefgemiddelden
een schatting zijn, verschillen.

Assumpties bij de independent samples t-toets:
(als één van deze voorwaardes geschonden wordt kunnen we de resultaten niet zomaar
interpreteren, de resultaten van de t-toets zijn dan niet betrouwbaar)
1. De twee steekproeven zijn onafhankelijk van elkaar getrokken (of de steekproef is willekeurig
verdeeld over de twee groepen), dus belangrijk dat de scores van de ene steekproef de andere
scores niet beïnvloed hebben (independent samples)
2. Er moet sprake zijn van een vergelijkbare spreiding van scores rondom het steekproefgemiddelde
in beide steekproeven, de varianties van de twee populaties waaruit de steekproeven komen zijn
gelijk → homogeniteit van variantie (homogeneity of variance) (equal variances assumed)

, Samengevat zijn er dus drie varianten van de t-toets:




Stappen bij independent samples t-toets
1. Nulhypothese: verschil tussen populatiegemiddelden is onbekend, we gaan uit van de
nulhypothese dat µ1-µ2=0
2. Toetsstatistiek: het verschil tussen gemiddelden omgezet in ‘standaard’ toetsstatistiek t-score
→ een t-score van 0 is nooit aanleiding om te twijfelen over de nulhypothese, want deze ligt precies
in het midden van de verdeling en betekend simpelweg dat de steekproefgemiddelden gelijk zijn aan
elkaar
3. Kritieke waarde: is het verschil tussen µ1-µ2 en 0 significant? Hoe groot verschil is genoeg om de
nulhypothese te verwerpen? (afhankelijk van α)
4. Beslissing: bij een significant verschil, hiervan is sprake wanneer de t-score van stap 2 de kritieke
waarde in stap 3 overschrijdt, veronderstellen we dat de steekproefgemiddelden echt verschillend
zijn

1. H0: µ1=µ2 ofwel H0: µ1-µ2=0
H1:µ1≠µ2 ofwel H1: µ1-µ2≠0
2.




- Onder de nulhypothese H0: µ1=µ2 valt (µ1-µ2) weg, aangezien het verwachte verschil tussen de
populatiegemiddelden onder de nulhypothese 0 is
- Voor de standaardfout gelden twee verschillende procedures:
• Equal variances assumed
• Equal variances not assumed

Equal variances assumed
Als σ21 en σ22 gelijk zijn: exacte t-verdeling
→ dan maken we gebruik van de gepoolde schatter van de varianties
6,49 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
kyradenneman Vrije Universiteit Amsterdam
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
17
Mitglied seit
6 Jahren
Anzahl der Follower
15
Dokumente
5
Zuletzt verkauft
1 Jahren vor

0,0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen