100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Prüfung

Solution Manual For College Algebra: Graphs and Models, 7th Edition By Marvin L. Bittinger, Judith A. Beecher, Judith A. Penna, Barbara L. Johnson All Chapters 1-8 A+

Bewertung
-
Verkauft
-
seiten
330
Klasse
A+
Hochgeladen auf
29-08-2025
geschrieben in
2025/2026

Solution Manual For College Algebra: Graphs and Models, 7th Edition By Marvin L. Bittinger, Judith A. Beecher, Judith A. Penna, Barbara L. Johnson All Chapters 1-8 A+

Hochschule
Kurs











Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Verknüpftes buch

Schule, Studium & Fach

Kurs

Dokument Information

Hochgeladen auf
29. august 2025
Anzahl der Seiten
330
geschrieben in
2025/2026
Typ
Prüfung
Enthält
Fragen & Antworten

Themen

Inhaltsvorschau

Chapter 1
Graphs, Functions, and Models
To graph (−1, 4) we move from the origin 1 unit
Check Your Understanding Section 1.1 left of the y-axis. Then we move 4 units up fro
x-axis.
1. The point (−5, 0) is on an axis, so it is not in any quadrant. To graph (0, 2) we do not move to the right or the
The statement is false. the y-axis since the first coordinate is 0. From the
we move 2 units up.
2. The ordered pair (1, −6) is located 1 unit right of the origin
and 6 units below it. The ordered pair (−6, 1) is located 6 To graph (2, −2) we move from the origin 2 units
units left of the origin and 1 unit above it. Thus, (1, −6) right of the y-axis. Then we move 2 units down fro
and (−6, 1) do not name the same point. The statement x-axis.
is false. y

3. True; the first coordinate of a point is also called the
( 1, 4) 4
abscissa.
2 (0, 2)
(4, 0)
4. True; the point (−2, 7) is 2 units left of the origin and
4 2 2 4 x
7 units above it. 2 (2, 2)

5. True; the second coordinate of a point is also called the ( 3, 5) 4
ordinate.

6. False; the point (0, −3) is on the y-axis. 5. To graph (−5, 1) we move from the origin 5 units
left of the y-axis. Then we move 1 unit up from the
To graph (5, 1) we move from the origin 5 units to th
Exercise Set 1.1 of the y-axis. Then we move 1 unit up from the x-a
To graph (2, 3) we move from the origin 2 units to th
1. Point A is located 5 units to the left of the y-axis and of the y-axis. Then we move 3 units up from the x-
4 units up from the x-axis, so its coordinates are (−5, 4).
To graph (2, −1) we move from the origin 2 units
Point B is located 2 units to the right of the y-axis and right of the y-axis. Then we move 1 unit down fro
2 units down from the x-axis, so its coordinates are (2, −2). x-axis.
Point C is located 0 units to the right or left of the y-axis To graph (0, 1) we do not move to the right or the
and 5 units down from the x-axis, so its coordinates are the y-axis since the first coordinate is 0. From the
(0, −5). we move 1 unit up.
Point D is located 3 units to the right of the y-axis and
5 units up from the x-axis, so its coordinates are (3, 5). y

Point E is located 5 units to the left of the y-axis and 4
4 units down from the x-axis, so its coordinates are (2, 3)
2
(−5, −4). ( 5, 1) (0, 1) (5, 1)
4 2 4 x
Point F is located 3 units to the right of the y-axis and 2 (2, 1)
0 units up or down from the x-axis, so its coordinates are
4
(3, 0).

3. To graph (4, 0) we move from the origin 4 units to the right
7. The first coordinate represents the year and the
of the y-axis. Since the second coordinate is 0, we do not
sponding second coordinate represents the number o
move up or down from the x-axis.
served by Southwest Airlines. The ordered pai
To graph (−3, −5) we move from the origin 3 units to the (1971, 3), (1981, 15), (1991, 32), (2001, 59), (201
left of the y-axis. Then we move 5 units down from the and (2021, 121).
x-axis.




Copyright 
c 2025 Pearson Education, Inc.

,14 Chapter 1: Graphs, Functions, and M


9. To determine whether (−1, −9) is a solution, substitute 2a + 5b = 3
−1 for x and −9 for y. 3
2·0+5·
? 3
y = 7x − 2 5 

−9 ? 7(−1) − 2 0+3 
 
 −7 − 2 3  3 TRUE
  3

−9 −9 TRUE
The equation 3 = 3 is true, so 0, is a solution.
The equation −9 = −9 is true, so (−1, −9) is a solution. 5
To determine whether (0, 2) is a solution, substitute 0 for 15. To determine whether (−0.75, 2.75) is a solution, s
x and 2 for y. tute −0.75 for x and 2.75 for y.
y = 7x − 2 x2 − y 2 = 3

2 ? 7 · 0 − 2 (−0.75)2 − (2.75)2 ? 3
 
 0−2 0.5625 − 7.5625 
 

2 −2 FALSE −7  3 FALSE
The equation 2 = −2 is false, so (0, 2) is not a solution. The equation −7 = 3 is false, so (−0.75, 2.75) is
2 3 solution.
2
11. To determine whether , is a solution, substitute To determine whether (2, −1) is a solution, substi
3 4 3
3 for x and −1 for y.
for x and for y.
4 x2 − y 2 = 3
6x − 4y = 1
22 − (−1)2 ? 3
2 3 
6· −4· ? 1 4−1 
4  
3 3  3 TRUE

4−3  The equation 3 = 3 is true, so (2, −1) is a solution.

1  1 TRUE
2 3 17. Graph 5x − 3y = −15.
The equation 1 = 1 is true, so , is a solution. To find the x-intercept we replace y with 0 and so
3 4
 3 x.
To determine whether 1, is a solution, substitute 1 for 5x − 3 · 0 = −15
2
3
x and for y. 5x = −15
2
x = −3
6x − 4y = 1
The x-intercept is (−3, 0).
3
6·1−4· ? 1 To find the y-intercept we replace x with 0 and so
2 
 y.
6−6 
 5 · 0 − 3y = −15
0  1 FALSE
 3 −3y = −15
The equation 0 = 1 is false, so 1, is not a solution. y=5
2
 1 4 The y-intercept is (0, 5).
13. To determine whether − , − is a solution, substitute We plot the intercepts and draw the line that co
2 5
1 4 them. We could find a third point as a check th
− for a and − for b.
2 5 intercepts were found correctly.
2a + 5b = 3
y
 1  4 (0, 5)
2 − +5 − ? 3 4
2 5 
5x 3y 15
 2
−1 − 4  ( 3, 0)
 4 2 2 4
−5  3 FALSE 2
x
 1 4
4
The equation −5 = 3 is false, so − , − is not a solu-
2 5
tion.
 3
To determine whether 0, is a solution, substitute 0 for
5
3
a and for b.
5

Copyright 
c 2025 Pearson Education, Inc.

,Exercise Set 1.1


19. Graph 2x + y = 4. When x = 0, y = 3x + 5 = 3 · 0 + 5 = 0 + 5 = 5
To find the x-intercept we replace y with 0 and solve for We list these points in a table, plot them, and dra
x. graph.
2x + 0 = 4 y
x y (x, y)
2x = 4 6

−3 −4 (−3, −4) y 3x 5
x=2
2
The x-intercept is (2, 0). −1 2 (−1, 2)
4 2 4 x
To find the y-intercept we replace x with 0 and solve for 0 5 (0, 5) 2
y.
2·0+y = 4
25. Graph x − y = 3.
y=4
Make a table of values, plot the points in the tabl
The y-intercept is (0, 4).
draw the graph.
We plot the intercepts and draw the line that contains y
them. We could find a third point as a check that the x y (x, y) x y 3
4
intercepts were found correctly.
−2 −5 (−2, −5) 2

y 4 2 2 4
0 −3 (0, −3) x
2x y 4 4 (0, 4) 2

3 0 (3, 0) 4
2
(2, 0)
4 2 2 4 x 3
2 27. Graph y = − x + 3.
4
4
By choosing multiples of 4 for x, we can avoid fr
values for y. Make a table of values, plot the points
21. Graph 4y − 3x = 12. table, and draw the graph.
To find the x-intercept we replace y with 0 and solve for y
x. x y (x, y)
4
4 · 0 − 3x = 12 −4 6 (−4, 6) 2
−3x = 12
0 3 (0, 3) 4 2 2 4 x
x = −4 2
3
4 0 (4, 0) 4
y 4x 3
The x-intercept is (−4, 0).
To find the y-intercept we replace x with 0 and solve for y.
4y − 3 · 0 = 12 29. Graph 5x − 2y = 8.
4y = 12 We could solve for y first.
y=3 5x − 2y = 8
The y-intercept is (0, 3). −2y = −5x + 8 Subtracting 5x on both sides
We plot the intercepts and draw the line that contains 5 1
y = x−4 Multiplying by − on bot
them. We could find a third point as a check that the 2 2
sides
intercepts were found correctly.
By choosing multiples of 2 for x we can avoid fr
y values for y. Make a table of values, plot the points
table, and draw the graph.
4y 3x 12 4
2
(0, 3) y
( 4, 0) x y (x, y)
4 2 2 4 x 4
2 0 −4 (0, −4) 2
4
2 1 (2, 1) 4 2 2 4 x
2

23. Graph y = 3x + 5. 4 6 (4, 6) 4
5x 2y 8
We choose some values for x and find the corresponding
y-values.
When x = −3, y = 3x + 5 = 3(−3) + 5 = −9 + 5 = −4.
When x = −1, y = 3x + 5 = 3(−1) + 5 = −3 + 5 = 2.

Copyright 
c 2025 Pearson Education, Inc.

, 16 Chapter 1: Graphs, Functions, and M


31. Graph x − 4y = 5. 39. Graph y = x2 + 2x + 3.
Make a table of values, plot the points in the table, and Make a table of values, plot the points in the tabl
draw the graph. draw the graph.
y y
x y (x, y) x y (x, y) 10
4 x 4y 5
8
−3 −2 (−3, −2) 2 −3 6 (−3, 6)
6
1 −1 (1, −1) 2 4 6 x −2 3 (−2, 3) 4
2
y 5 x 2 1 2x 1 3
5 0 (5, 0) 4 −1 2 (−1, 2) 2

24 22 2 4 x
0 3 (0, 3)
33. Graph 2x + 5y = −10.
1 6 (1, 6)
In this case, it is convenient to find the intercepts along
with a third point on the graph. Make a table of values,
plot the points in the table, and draw the graph. 41. Graph (b) is the graph of y = 3 − x.
y
x y (x, y) 43. Graph (a) is the graph of y = x2 + 2x + 1.
4 2x 5y 10
−5 0 (−5, 0) 2
45. Enter the equation, select the standard window, and
the equation.
0 −2 (0, −2) 6 2 2 x
y 2x 1
5 −4 (5, −4) 4 10


35. Graph y = −x2 . 10 10
Make a table of values, plot the points in the table, and
draw the graph.
10
y
x y (x, y) 47. First solve the equation for y: y = −4x + 7. Ent
4 2 2 4 x equation in this form, select the standard window
−2 −4 (−2, −4) 2
graph the equation.
4 y x2
−1 −1 (−1, −1)
6 4x y 7
0 0 (0, 0) 8 10

1 −1 (1, −1)
10 10
2 −4 (2, −4)

37. Graph y = x2 − 3. 10

Make a table of values, plot the points in the table, and 49. Enter the equation, select the standard window, and
draw the graph. the equation.
y
1
y 3x 2
x y (x, y)
6
−3 6 (−3, 6) 4 10
2
2 y x 3
−1 −2 (−1, −2)
4 2 2 4 x 10 10
0 −3 (0, −3) 2


1 −2 (1, −2) 10

3 6 (3, 6)





Copyright 
c 2025 Pearson Education, Inc.

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
TestBankStuvia Howard Community College
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
94
Mitglied seit
1 Jahren
Anzahl der Follower
15
Dokumente
822
Zuletzt verkauft
1 Jahren vor
I have Accounting, Finance, Statistics, Computer Science, Nursing and other Subjects A+ solutions

Nursing Being my main profession line, My mission is to be your LIGHT in the dark. If you're worried or having trouble in nursing school, I really want my notes to be your guide! I know they have helped countless others get through and that's all I want for YOU! All the materials posted are A+ Graded. Please rate and write a review after using my materials. Your reviews will motivate me to add more materials. Thank You So Much!!!

Mehr lesen Weniger lesen
4,6

80 rezensionen

5
61
4
12
3
2
2
0
1
5

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen