100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Prüfung

TEST BANK FOR Trigonometry 5th Edition by Cynthia Y. Young ISBN:978-1119742623 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!NEW LATEST UPDATE!!!!

Bewertung
-
Verkauft
-
seiten
974
Klasse
A+
Hochgeladen auf
28-07-2025
geschrieben in
2024/2025

TEST BANK FOR Trigonometry 5th Edition by Cynthia Y. Young ISBN:978-1119742623 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!NEW LATEST UPDATE!!!!

Hochschule
Trigonometry 5th Edition
Kurs
Trigonometry 5th Edition











Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Verknüpftes buch

Schule, Studium & Fach

Hochschule
Trigonometry 5th Edition
Kurs
Trigonometry 5th Edition

Dokument Information

Hochgeladen auf
28. juli 2025
Anzahl der Seiten
974
geschrieben in
2024/2025
Typ
Prüfung
Enthält
Fragen & Antworten

Themen

Inhaltsvorschau

CHAPTER 1 br




Section 1.1 Solutions --------------------------------------------------------------------------------
br br br




1 x 1 x
 
b r b r b r br b r b r b r

1. Solve for x:
b r br br b r br 2. Solve for x:
b r br br b r br



2 360∘ 4 360∘
360∘  2x, so that x 180∘ .
br br b r br b r br br br 360∘  4x, so that x  90∘ .
b r br b r br b r br br br




1 x 2 x
3. Solve for x:   4. Solve for x:  
b r b r b r b r b r b r

b r br br b r br br b r br br b r b r br



3 360∘ 3 360∘
360∘  3x, so that x  120∘ . (Note
br br br br b r br br br br 720∘  2(360∘ )  3x, so that x  240∘ . (
br br br br br br br b r br br br br



: The angle has a negative measure si
br br br br br br br Note: The angle has a negative measur
b r br br br br b r



nce it is a clockwise rotation.)
br br br br br e since it is a clockwise rotation.)
br br br br br br




5 x 7 x
 
b r b r b r br brb r b r b r

5. Solve for x:
b r br br b r br 6. Solve for x:
b r br br b r br



6 360∘ 12 360∘
1800∘  5(360∘ )  6x, so that x  300∘ .
br br br br br br br b r br br br 2520∘  7(360∘ ) 12x, so that x  210∘ .
br br br br br b r br b r br br br




4 x 5 x
7. Solve for x:   8. Solve for x:  
br b r b r b r b r b r b r

b r br br b r br br b r br br b r br br



5 360∘ 9 360∘
1440∘  4(360∘ )  5x, so that
br br br br br br br 1800∘  5(360∘ )  9x, so that
br br br br br br br




x  288∘ .
br br br x  200∘ .
br br br




(Note: The angle has a negative meas
b r br br br br br (Note: The angle has a negative measur
b r br br br br br



ure since it is a clockwise rotation.)
br br br br br br e since it is a clockwise rotation.)
br br br br br br




9. 10.
a) complement: 90∘ 18∘  72∘ b r br b r b r a) complement: 90∘ 39∘  51∘ b r br br b r b r




b) supplement: 180∘ 18∘  162∘ b r br b r b r b) supplement: 180∘ 39∘  141∘ b r br br b r b r




11. 12.
a) complement: 90∘  42∘  48∘ b r br br b r b r a) complement: 90∘ 57∘  33∘ b r br br b r b r




b) supplement: 180∘  42∘  138∘ b r br br b r b r b) supplement: 180∘ 57∘  123∘ b r br br b r b r




1

,Chapter 1 br




13. 14.
a) complement: 90∘ 89∘  1∘ b r br br b r b r a) complement: 90∘ 75∘  15∘ b r br br b r b r




b) supplement: 180∘ 89∘  91∘ b r br br b r b r b) supplement: 180∘  75∘  105∘ b r br br b r b r




15. Since the angles with measures 4x∘ and 6x∘ are assumed to be complement
b r br br br br br b r b r br br br br br




ary, we know that 4x∘ 6x∘  90∘. Simplifying this yields
br br br br br br br br b r br br




10x∘  90∘, br br b
r b r so that x  9. So, the two angles have measures 36∘and 54∘ .
br b r br br b r br br br br br b r br br




16. Since the angles with measures 3x∘ and 15x∘ are assumed to be supplement
b r br br br br br b r b r br br br br br




ary, we know that 3x∘  15x∘ 180∘. Simplifying this yields
br br br br br br br br b r br br




18x∘ 180∘, so that br br br br b r x 10. So, the two angles have measures 30∘ and 150∘ .
br br b r br br br br br b r br br br




17. Since the angles with measures 8x∘ and 4x∘ are assumed to be supplementar
b r br br br br b r br b r br br br br br




y, we know that 8x∘  4x∘ 180∘. Simplifying this yields
br br br br br br br br b r br br




12x∘ 180∘, br br b r so that x 15. So, the two angles have measures 60∘ and 120∘ .
br b r br br b r br br br br br b r br br br




18. Since the angles with measures 3x 15∘and 10x 10∘are assumed to be com
b r br br br br b r br b
r b r br b
r br br br br




plementary, we know that 3x 15∘  10x 10∘  90∘. Simplifying this yields
br br br br br br br br br br b r br br




13x 25∘  90∘, br br br br b r so that 13x∘  65∘ and thus, x  5. So, the two angles have measu
br br br br b r br b r br br b r br br br br br




res 30∘and 60∘ .
b r br br




19. Since     180∘, we know th
b r br br br br br b r br b r br br 20. Since     180∘, we know tha
b r br br br br br b r br b r br br




at t
1 17∘ –33∘  180∘ and so,  30∘ . 1 10∘ –45∘  180∘ and so,   25∘ .
– –
br br br br br br br b r br br br br br br br br br br br br br br

br br


br150∘ br155∘



21. Since     180∘, we know th
b r br br br br br b r br b r br br 22. Since     180∘, we know tha
b r br br br br br b r br b r br br




at t
 4      180∘ and so,   30∘.
br br br br br br br br br br br br br 3     180∘ and so,   36∘.
br br br br br br br br br br br br br


–– –– –– ––
br6br br5

Thus,   4 120∘ and     30∘ .
b r b r br b r br b r br b r br b r br br Thus,   3 108∘ and     36∘ .
b r b r br b r br b r br b r br b r br br




2

, Section 1.1br




23.  180∘ 53.3∘  23.6∘  103.1∘
b r br br br br br br br br br 24.  180∘ 105.6∘ 13.2∘  61.2∘
b r br br br br br br br br




25. Since this is a right triangle, we know from the Pythagorean Theorem that a
b r br br br br br br br br br br br br br



2
 b2  c2. Using the given information, this becomes 42 32  c2, which simpl
br br br br b r br br br br br b r br br br br br b r br




ifies to c2  25, so we conclude that c  5.
br b r br br b r br br br b r br br br




26. Since this is a right triangle, we know from the Pythagorean Theorem that
b r br br br br br br br br br br br br




a2  b2  c2. Using the given information, this becomes 32  32  c2, which simp
br br b r br b r br br br br br b r br br b r br br b r br




lifies to c2 18, so we conclude that c 
br b r b r br b r br br br b r br b r b r 18  3 2 . br br b r br




27. Since this is a right triangle, we know from the Pythagorean Theorem that a
b r br br br br br br br br br br br br br



2
 b2  c2. Using the given information, this becomes 62  b2 102, which sim
br br br br b r br br br br br b r br br br br br b r br




plifies to 36  b2 100 and then to, b2  64, so we conclude that b  8 .
br b r br br br br br br br br br br b r br br br b r br br br




28. Since this is a right triangle, we know from the Pythagorean Theorem that
b r b r b r b r b r b r b r br b r b r b r b r b r




a2  b2  c2. Using the given information, this becomes a2  72 122, which
br br b r br b r br br br br br b r br br b r br br b r




simplifies to a2  95, so we conclude that a  95 .
br br b r br br b r br br br b r br br




29. Since this is a right triangle, we know from the Pythagorean Theorem that
b r b r b r b r b r b r b r br b r b r b r b r b r




a2  b2  c2. Using the given information, this becomes 82  52  c2, which
br br b r br b r br br br br br b r br br b r br br b r br




simplifies to c2  89, so we conclude that c  br b r br br b r br br br b r br 89 . br




30. Since this is a right triangle, we know from the Pythagorean Theorem that
b r b r b r b r b r b r b r br b r b r b r b r b r




a2  b2  c2. Using the given information, this becomes 62  52  c2, which
br br b r br b r br br br br br b r br br b r br br b r br




simplifies to c2  61, so we conclude that c  br b r br br b r br br br b r br 61 . br




31. Since this is a right triangle, we know from the Pythagorean Theorem that
b r b r b r b r b r b r b r br b r b r b r b r b r




a2  b2  c2. Using the given information, this becomes 72  b2 112, which
br br b r br b r br br br br br b r br br b r br br b r




simplifies to b2  72, so we conclude that b  72  6 2 .
br br b r br br b r br br br b r br br br b r br




32. Since this is a right triangle, we know from the Pythagorean Theorem that
br br br br br br br br br br br br br




a2  b2  c2. Using the given information, this becomes a2  52  92, which
br br b r br b r br br br br br b r br br b r br br b r br




simplifies to a2  56, so we conclude that a  br b r br br b r br br br b r br 56  2 14 . br br b r br




3

, Chapter 1 br




33. b r Since this is a right triangle, we know from the Pythagorean Theorem that
b r b r b r b r b r b r br b r b r b r b r b r




 7
2b
a2  b2  c2. Using the given information, this becomes a2   52, which simpli
r


br br b r br b r br br br br br b r br br br br br b r br
b r




fies to a2 18, so we conclude that a 
br b r b r br b r br br br b r br b r b r 18  3 2 . br br b r br




34. Since this is a right triangle, we know from the Pythagorean Theorem that
br br br br br br br br br br br br br




a2  b2  c2. Using the given information, this becomes 52  b2 102, which
br br b r br b r br br br br br b r br br b r br br b r




simplifies to b2  75, so we conclude that b  75  5 3 .
br br b r br br b r br br br b r br br br b r br




35. If x 10 in., then the hypotenuse
b r b r br br br b r br br br 36. If x  8 m, then the hypotenuse of th
b r b r br br br b r br br br br




of this triangle has length is triangle has length 8 2 11.31 m .
br br br br

br br br b r b r br br br br



10 2 14.14 in.
b r br br br




37. Let x be the length of a leg in the given 45∘  45∘ 90∘ triangle. If the hypo
b r br br br br br br br br br br b r br br br br br b r br br




tenuse of this triangle has length 2 2 cm, then
br br br br br b r b r b r b r




2 x  2 2, so that x  2.
br br br b r br br br br br br




Hence, the length of each of the two legs is 2 cm .
br br br br br br br br br b r br br




38. Let x be the length of a leg in the given 45∘  45∘ 90∘ triangle. If the hypotenuse
br br br br br br br br br br br br br br br br b r b r br br



10 10
of this triangle has length 10 ft., then 2 x  10, so that x    5.
b r b r br

br br br br br br br br b r b r br br br br br



2 2
Hence, the length of each of the two legs is br br br br br br br br br 5 ft. br




39. The hypotenuse has length
b r br br br
40. Since br 2x  6m  x  br br br br br br
6 2
b r b r  3 2m,
br b r




 
2
2 4 2 in.  8in.
br b r b r br br br br
each leg has length 3 2 m. br br br br b r b r




41. Since the lengths of the two legs of the given30∘  60∘  90∘ triangle are x an
b r br br br br br br br br br br b r br b r br b r br br br




d 3 x, the shorter leg must have length x. Hence, using the given information,
br br b r b r b r b r b r b r br b r b r b r b r b r




we b r




know that x  5 m. Thus, the two legs have lengths 5 m and 5 3  8.66 m, and t
br b r br br br b r br br br br br b r br br b r b r br br br b r br




he hypotenuse has length 10 m.
br br br br br




42. Since the lengths of the two legs of the given 30∘  60∘  90∘ triangle are x a
b r br br br br br br br br br b r br br b r br b r br br br




nd 3 x, the shorter leg must have length x. Hence, using the given informatio
br br b r b r b r b r b r b r br b r b r b r b r b r




n, we b r




know that x  9ft. Thus, the two legs have lengths 9 ft. and 9 3 15.59 ft., and t
br b r br br br b r br br br br br b r br br b r b r br br br b r br




4

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
BrainBurst Stanford University
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
348
Mitglied seit
1 Jahren
Anzahl der Follower
12
Dokumente
526
Zuletzt verkauft
19 Jahren vor
BrainBurst

best test banks in the market

4,4

58 rezensionen

5
46
4
2
3
3
2
1
1
6

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen