100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Prüfung

Solution Manual for Trigonometry, 5th Edition by Cynthia Y. Young

Bewertung
-
Verkauft
-
seiten
954
Klasse
A+
Hochgeladen auf
24-07-2025
geschrieben in
2024/2025

Solution Manual for Trigonometry, 5th Edition by Cynthia Y. Young

Hochschule
Kurs











Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Verknüpftes buch

Schule, Studium & Fach

Kurs

Dokument Information

Hochgeladen auf
24. juli 2025
Anzahl der Seiten
954
geschrieben in
2024/2025
Typ
Prüfung
Enthält
Fragen & Antworten

Themen

Inhaltsvorschau

Solution Manual for Trigonometry, 5th Edition by Cynthia Y. Young
CHAPTER 1
Section 1.1 Solutions --------------------------------------------------------------------------------
1 x 1 x
1. Solve for x:  2. Solve for x: 
2 360∘ 4 360∘
360∘  2x, so that x  180∘ . 360∘  4x, so that x  90∘ .

1 x 2 x
3. Solve for x:   4. Solve for x:  
3 360∘ 3 360∘
360∘  3x, so that x  120∘ . 720∘  2(360∘ )  3x, so that x  240∘ .
(Note: The angle has a negative (Note: The angle has a negative
measure since it is a clockwise measure since it is a clockwise rotation.)
rotation.)
5 x 7 x
5. Solve for x:  6. Solve for x: 
6 360∘ 12 360∘
1800∘  5(360∘ )  6x, so that x  300∘ . 2520∘  7(360∘ )  12x, so that x  210∘ .

4 x 5 x
7. Solve for x:   8. Solve for x:  
5 360∘ 9 360∘
1440∘  4(360∘ )  5x, so that 1800∘  5(360∘ )  9x, so that
x  288∘ . x  200∘ .
(Note: The angle has a negative (Note: The angle has a negative
measure since it is a clockwise measure since it is a clockwise rotation.)
rotation.)

9. 10.
a) complement: 90∘ 18∘  72∘ a) complement: 90∘  39∘  51∘
b) supplement: 180∘ 18∘  162∘ b) supplement: 180∘  39∘  141∘

11. 12.
a) complement: 90∘  42∘  48∘ a) complement: 90∘  57∘  33∘
b) supplement: 180∘  42∘  138∘ b) supplement: 180∘  57∘  123∘



1

,Chapter 1


13. 14.
a) complement: 90∘  89∘  1∘ a) complement: 90∘  75∘  15∘
b) supplement: 180∘  89∘  91∘ b) supplement: 180∘  75∘  105∘

15. Since the angles with measures  4x ∘ and  6x ∘ are assumed to be
complementary, we know that  4x ∘   6x ∘  90∘. Simplifying this yields

10x ∘  90∘ , so that x  9. So, the two angles have measures 36∘ and 54∘ .

16. Since the angles with measures 3x ∘ and 15x ∘ are assumed to be
supplementary, we know that 3x ∘  15x ∘  180∘. Simplifying this yields

18x ∘  180∘ , so that x  10. So, the two angles have measures 30∘ and 150∘ .

17. Since the angles with measures 8x ∘ and  4x ∘ are assumed to be
supplementary, we know that  8x ∘   4x ∘  180∘. Simplifying this yields

12x ∘  180∘ , so that x  15. So, the two angles have measures 60∘ and 120∘ .

18. Since the angles with measures 3x 15 ∘ and 10x 10 ∘ are assumed to be
complementary, we know that 3x 15 ∘  10x 10 ∘  90∘. Simplifying this yields
13x  25 ∘  90∘ , so that 13x ∘  65∘ and thus, x  5. So, the two angles have
measures 30∘ and 60∘ .

19. Since       180∘ , we know 20. Since       180∘ , we know
that that
117∘ 33∘    180∘ and so,   30∘ . 110∘ 45 ∘    180∘ and so,   25∘ .
– – – –
 150∘  155∘



21. Since       180∘ , we know 22. Since       180∘ , we know
that that
 4          180∘ and so,   30∘. 3         180∘ and so,   36∘.
–– –– –– ––
 6   5

Thus,   4   120∘ and     30∘ . Thus,   3  108∘ and     36∘ .


2

, Section 1.1



23.   180 ∘  53.3∘  23.6 ∘   103.1∘ 24.   180 ∘  105.6 ∘ 13.2∘   61.2 ∘

25. Since this is a right triangle, we know from the Pythagorean Theorem that
a2  b2  c2. Using the given information, this becomes 42  32  c2 , which
simplifies to c2  25, so we conclude that c  5.

26. Since this is a right triangle, we know from the Pythagorean Theorem that
a2  b2  c2. Using the given information, this becomes 32  32  c2 , which
simplifies to c2  18, so we conclude that c  18  3 2 .

27. Since this is a right triangle, we know from the Pythagorean Theorem that
a2  b2  c2. Using the given information, this becomes 62  b2  102 , which
simplifies to 36  b2  100 and then to, b2  64, so we conclude that b  8.

28. Since this is a right triangle, we know from the Pythagorean Theorem that
a2  b2  c2. Using the given information, this becomes a2  72  122 , which
simplifies to a2  95, so we conclude that a  95 .

29. Since this is a right triangle, we know from the Pythagorean Theorem that
a2  b2  c2. Using the given information, this becomes 82  52  c2 , which
simplifies to c2  89, so we conclude that c  89 .

30. Since this is a right triangle, we know from the Pythagorean Theorem that
a2  b2  c2. Using the given information, this becomes 62  52  c2 , which
simplifies to c2  61, so we conclude that c  61 .

31. Since this is a right triangle, we know from the Pythagorean Theorem that
a2  b2  c2. Using the given information, this becomes 72  b2  112 , which
simplifies to b2  72, so we conclude that b  72  6 2 .

32. Since this is a right triangle, we know from the Pythagorean Theorem that
a2  b2  c2. Using the given information, this becomes a2  52  92 , which
simplifies to a2  56, so we conclude that a  56  2 14 .




3

, Chapter 1


33. Since this is a right triangle, we know from the Pythagorean Theorem that

 7
2
a 2  b 2  c 2 . Using the given information, this becomes a 2   5 2 , which

simplifies to a2  18, so we conclude that a  18  3 2 .

34. Since this is a right triangle, we know from the Pythagorean Theorem that
a2  b2  c2. Using the given information, this becomes 52  b2  102 , which
simplifies to b2  75, so we conclude that b  75  5 3 .

35. If x  10 in., then the hypotenuse 36. If x  8 m, then the hypotenuse of
of this triangle has length
this triangle has length 8 2  11.31 m .
10 2  14.14 in.

37. Let x be the length of a leg in the given 45∘  45∘  90∘ triangle. If the
hypotenuse of this triangle has length 2 2 cm, then 2 x  2 2, so that x  2.
Hence, the length of each of the two legs is 2 cm .

38. Let x be the length of a leg in the given 45∘  45∘  90∘ triangle. If the hypotenuse
10 10
of this triangle has length 10 ft., then 2 x  10, so that x    5.
2 2
Hence, the length of each of the two legs is 5 ft.

39. The hypotenuse has length 40. Since 2x  6m  x  6 2
 3 2m,
 
2
2 4 2 in.  8 in. each leg has length 3 2 m.

41. Since the lengths of the two legs of the given 30∘  60∘  90∘ triangle are x and
3 x, the shorter leg must have length x. Hence, using the given information, we
know that x  5 m. Thus, the two legs have lengths 5 m and 5 3  8.66 m, and
the hypotenuse has length 10 m.

42. Since the lengths of the two legs of the given 30∘  60∘  90∘ triangle are x and
3 x, the shorter leg must have length x. Hence, using the given information, we
know that x  9 ft. Thus, the two legs have lengths 9 ft. and 9 3  15.59 ft., and
the hypotenuse has length 18 ft.



4
11,41 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden


Ebenfalls erhältlich im paket-deal

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
TestsBanks University of Greenwich (London)
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
872
Mitglied seit
4 Jahren
Anzahl der Follower
181
Dokumente
2359
Zuletzt verkauft
4 Jahren vor
Accounting, Finance, Statistics, Computer Science, Nursing, Chemistry, Biology & More — A+ Test Banks, Study Guides & Solutions

Welcome to TestsBanks! Best Educational Resources for Student I offer test banks, study guides, and solution manuals for all subjects — including specialized test banks and solution manuals for business books. My materials have already supported countless students in achieving higher grades, and I want them to be the guide that makes your academic journey easier too. I’m passionate, approachable, and always focused on quality — because I believe every student deserves the chance to excel. THANKS ALOT!!

Mehr lesen Weniger lesen
4,1

132 rezensionen

5
79
4
19
3
13
2
6
1
15

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen