100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Prüfung

STA3702 Assignment 2 2024 - DUE 7 June 2024

Bewertung
-
Verkauft
1
seiten
25
Klasse
A+
Hochgeladen auf
03-06-2024
geschrieben in
2023/2024

STA3702 Assignment 2 2024 (Unique Nr. 199414) - DUE 7 June 2024 ;100 % TRUSTED workings, explanations and solutions. For assistance call or W.h.a.t.s.a.p.p us on ...(.+.2.5.4.7.7.9.5.4.0.1.3.2)........... Question 1 [44] The number of cars, X , passing through a certain intersection every week has Poisson distribution with mean λ. Let X1 , X2 , ..., Xn be independent variables representing the number of cars passing through the intersection onn randomly chosen weeks of the year. Furthermore, let S2 = 1 n − 1 nX i=1 Xi − X 2 S⋆2 = n − 1 n S2 and X = 1 n nX i=1 Xi be three competing estimators of λ. Given: V (S 2 ) = E [X i − λ] 4 n − λ 2 (n − 3) n(n − 1) . (a) Determine: (i) E X ; and (ii) prove or disprove thatE (S 2 ) = λ. (10) Hint: nX i=1 Xi − X 2 = nX i=1 X 2 i − nX 2 . (b) Prove or disprove thatS⋆2 is a method of moments estimator of λ. Hint: nX i=1 Xi − X 2 = nX i=1 X 2 i − nX 2 . (6) (c) Determine the bias of S⋆2 in estimating λ. (4) (d) Determine the variances of: (i) X ; and (ii) S⋆2. (8) (e) Determine the mean square errors of: (i) X ; (ii) S2 ; and (iii) S⋆2. (4) (f) Which of X , S2 and S⋆2 is the least accurate estimator of λ. Justify your answer. (3) (g) Prove or disprove thatX , S2 and S⋆2 are consistent estimators of λ. (9) Question 2 [42] The lifetime (X in years) of an electronic component manufactured by certain company has a distribution with probability density function: f (x|θ) =    1 θ exp − (x − µ) θ if θ > 0 and x > µ , 0 otherwise; where θ is unknown andµ is known. The company has hired you to estimateθ.Suppose that X1 , X2 , ..., Xn are the lifetimes ofn randomly chosen electronic components manufactured by the company. 2 STA3702/012/0/2024 Given: E(X) = θ − µ and V (X) = θ 2 . (a) What are the simplified likelihood and log-likelihood functions ofθ? (6) (b) Show that nX i=1 Xi is a sufficient statistic for θ. (4) (c) Show that nX i=1 Xi is a minimal sufficient statistic for θ. (5) (d) Prove or disprove that the maximum likelihood estimate ofθ is ˆθ = x − µ. (5) (e) What is the maximum likelihood estimate of θ 2 ? Justify your answer. (2) (f) Show that the method of moments estimate of θ 2 is ˜θ 2 = (x − µ) 2. (3) (g) Calculate the Fisher information about θ in the sample. (6) (h) What is the observed information about θ in the sample? (2) (i) Determine the Crammer-Rao lower bound for the variance of an unbiased estimator of θ. (2) (j) Prove or disprove that the maximum likelihood estimator of θ is also the minimum variance unbiased estimator of θ. (7) Question 3 [12] Refer to Question 2. Given: A distribution belongs to the regular 1-parameter exponential family if among other regularity conditions its probability density or mass function has the form: f (x|β) = g (x) exp {βt (x) − ψ (β)} , β ∈ Ω ⊂ (∞, ∞). Furthermore, for this distribution E[t(X)] = ψ ′ (β) and V ar[t(X)] = ψ ′′ (β). (a) Show that f (x|θ) belongs to the 1-parameter exponential family by expressing it in the form f (x|β) above. Do not forget to identify β, t(x) and ψ(β). (6) (b) What is the complete sufficient statistic for θ? Justify your answer. (2) (c) Find the mean and the variance of the complete sufficient statistic forθ. (4) Total: [98]

Mehr anzeigen Weniger lesen
Hochschule
Kurs










Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Verknüpftes buch

Schule, Studium & Fach

Hochschule
Kurs

Dokument Information

Hochgeladen auf
3. juni 2024
Anzahl der Seiten
25
geschrieben in
2023/2024
Typ
Prüfung
Enthält
Fragen & Antworten

Themen

Inhaltsvorschau

STA3702
ASSIGNMENT 2 2024
UNIQUE NO. 199414
DUE DATE: 7 JUNE 2024

, STA3702/012/0/2024




Tutorial letter 012/0/2024


Statistical Inference III
STA3702

Year module


Department of Statistics


ASSIGNMENT 02 QUESTIONS




university
Define tomorrow. of south africa

, ASSIGNMENT 02 QUESTIONS
Unique Nr.:199414
Fixed closing date: 7 JUNE 2024



Question 1 [44]
The number of cars, X , passing through a certain intersection every week has Poisson dis-
tribution with mean λ. Let X 1, X2, ..., Xn be independent variables representing the number of
cars passing through the intersection on n randomly chosen weeks of the year. Furthermore,
let

1 X 1X
n n
2 n−1 2
S2 = Xi − X S⋆2 = S and X = Xi
n − 1 i=1 n n
i=1

be three competing estimators of λ.
E [X i− λ] 4 λ 2(n − 3)
Given: V (S ) =
2 − .
n n(n − 1)

(a) Determine: (i) E X ; and (ii) prove or disprove that E (S 2) = λ. (10)
Xn 2
Xn
Hint: Xi − X = X i2 − nX 2.
i=1 i=1

(b) Prove or disprove that S⋆2 is a method of moments estimator of λ.
Xn 2
Xn
Hint: X i − X = X i2 − nX 2. (6)
i=1 i=1

(c) Determine the bias of S⋆2
in estimating λ. (4)
(d) Determine the variances of: (i) X ; and (ii) S⋆2 . (8)
(e) Determine the mean square errors of: (i) X ; (ii) S2; and (iii) S⋆2 . (4)
(f) Which of X , S2 and S⋆2 is the least accurate estimator of λ. Justify your answer. (3)
(g) Prove or disprove that X , S2 and S⋆2 are consistent estimators of λ. (9)

Question 2 [42]
The lifetime ( X in years) of an electronic component manufactured by certain company has
a distribution with probability density function:

 1 (x − µ)
 θ exp − θ
if θ > 0 and x > µ ,
f (x|θ) =


0 otherwise;
where θ is unknown and µ is known. The company has hired you to estimateθ. Suppose that
X 1, X2, ..., Xn are the lifetimes of n randomly chosen electronic components manufactured by
the company.


2

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
LIBRARYpro University of South Africa (Unisa)
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
10518
Mitglied seit
2 Jahren
Anzahl der Follower
4904
Dokumente
4814
Zuletzt verkauft
1 Jahren vor
LIBRARY

On this page, you find all documents, Package Deals, and Flashcards offered by seller LIBRARYpro (LIBRARY). Knowledge is Power. #You already got my attention!

3,7

1457 rezensionen

5
683
4
235
3
243
2
78
1
218

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen