100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Sumario Resumen Sistemas De Ecuaciones (Completo)

Bewertung
-
Verkauft
-
seiten
2
Hochgeladen auf
28-05-2024
geschrieben in
2023/2024

Resumen Sistemas De Ecuaciones totalmente completo con todo lo que necesitas saber para aprender

Hochschule
Kurs








Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Mittelschule
Studium
Bachillerato
Kurs
Schuljahr
2

Dokument Information

Hochgeladen auf
28. mai 2024
Anzahl der Seiten
2
geschrieben in
2023/2024
Typ
Zusammenfassung

Themen

Inhaltsvorschau

DISCUSIÓON Y RESOLUCIÓON DE SISTEMAS DE ECUACIONES LINEALES

DISCUTIR UN SISTEMA DE ECUACIONES es 2x−3y+az=2 2 −3 a
decir cuantas soluciones tiene (0,1 o infinitas) "−2x +4z=−3 MATRIZ DE COEFICIENTES A= −2 0 4
RESOLVER UN SISTEMA DE ECUACIONES es 2ay+3z=1 0 2a 3
describir las soluciones (cuando las haya) x 2
MATRIZ DE INCOGNITAS X= y MATRIZ DE TERMINOS INDEPENDIENTES B= −3
z 1
TEOREMA DE ROUCHEi FROBENIUS l(TRF
OBSERVA: Rg(A*) ≥ Rg(A)
Dado un sistema de ecuaciones lineales con m ecuaciones y n incognitas, siendo A la matriz de coeficientes de las
incognitas, y A* la matriz ampliada formada por (A| B), siendo B la matriz columna formada por los terminos 2 −3 a 2
independientes del sistema, entonces se cumple que si::e A*= −2 0 4 −3
Rg(A) = Rg(A*)=n=nº incognitas SISTEMA COMPATIBLE DETERMINADO → S C D (1 SOLUCION) 0 2a 3 1
MATRIZ AMPLIADA
Rg(A) = Rg(A*)<n=nº incognitas SISTEMA COMPATIBLE INDETERMINADO→ S C I (INFINITAS SOLUCIONES)
Rg(A) ≠ Rg(A*) SISTEMA INCOMPATIBLE → S I (0 SOLUCIONES) EN LOS SCD
REGLA DE CRAMER A ≠0
Un sistema es HOMOGENEO si todos sus terminos Podemos resolver sistemas compatibles determinados (SCD) usando esta regla:
independientes son 0, por lo que rg(A)=rg(A*) siempre |B C2 C3|
x= Sustituimos en la matriz A la columna
Si rg(A) = nº incogitas, es SCD (1 SOLUCION). La unica A
solucion seria la solucion trivial, es decir, x=0, y=0 … |C1 B C3| correspondiente a los coeficientes de la
y=
Si rg(A) < nº incognitas,es SCI (infinitas soluciones). Una de A incognita x,y,z… por la matriz
|C1 C2 B| columna B de terminos independientes
ellas siempre es la solucion trivial. z=
A
DISCUSION Y RESOLUCION DE SISTEMAS CON PARAMETRO k
EL SISTEMA TIENE EL MISMO Nº DE ECUACIONES Y DE EL SISTEMA TIENE Nº DISTINTO DE ECUACIONES QUE DE
INCOGNITAS (n) INCOGNITAS
1º Estudiar el rango de A. Para ello calcular A =0 1º Estudiar el rg(A*) segun los valores de k
2º Resolver la ecuacion anterior. Las soluciones son los valores a,b,c 2º Segun los valores hallados en el apartado anterior, hallar el
3º Si k ≠ a, b ,c.. entonces A ≠0, por lo que el rg(A)=n, El rg(A)
rg(A*) tambien es n ya que rg(A) ≤ rg(A*) ≤.n. Por el TRF (SCD, 1 3º Discutir con los valores de los rangos usando el TRF
solucionyResolver por Cramer (no sustitutuir k por ningun valor en 4º Resolver cuando sea posible.((Si es SCD y con parametro, se
particular) puede usar la regla de Cramer)
Si k = a sustituir ese valor en la matriz A*, estudiar rango de A y
A* (GAUSS, matriz escalonada) y aplicar TRF Resolver cuando se pueda
1utiliza la matriz de A* escalonada 1 .
RESOLUCION DE SISTEMAS DE ECUACIONES LINEALES EN EL CASO SCD CON MATRICES
Podemos representar el sistema de forma matricial de la siguiente forma: A·X=B, siendo A·X=B
A la matriz de coeficientes de las incognitas, X la matriz columna formada por las EN LOS SCD A ≠0 Y
A-1·A·X= A-1· B
incognitas y la matriz columna B formada por los terminos independientes.

POR LO TANTO EXISTE A-1
7,66 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
itsd3lay

Lerne den Verkäufer kennen

Seller avatar
itsd3lay
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
0
Mitglied seit
1 Jahren
Anzahl der Follower
0
Dokumente
18
Zuletzt verkauft
-

0,0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen