100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Analyse II - Hfst 15 samenvatting

Bewertung
-
Verkauft
-
seiten
9
Hochgeladen auf
04-05-2024
geschrieben in
2023/2024

Hfst 15: functies van meerdere variabelen gegeven door prof dr ir Jan Baetens Deze samenvatting beslaat de cursus waaraan extra inzichten en bevindingen zijn toegevoegd

Hochschule
Kurs









Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Hochgeladen auf
4. mai 2024
Datei zuletzt aktualisiert am
13. juli 2024
Anzahl der Seiten
9
geschrieben in
2023/2024
Typ
Zusammenfassung

Themen

Inhaltsvorschau

Hoofdstuk 15
Functies van meerdere variabelen


Inleidende begrippen
Functie van 2 variabelen: nu heb je 2 inputs (x en y) en 1 output (z) dus gaan nu in de hoogte

𝒛 = 𝒇(𝒙, 𝒚) = oppervlak in de ruimte

Met D het domein van f en het bereik van f is de verzameling van alle mogelijke outputs (welke z’s bereikt
worden), domein = alle inputs, bereik = alle outputs (z)


Niveaukromme van f(x,y)
= de krommen gegeven door f(x,y) = constante
= krommen waarop de hoogte (z) constant blijft, dus f(x1, x2, …., xn) = constante

 Hier zijn het krommes, bij 3 variabelen krijg je niveau-oppervlakten



Limieten en continuïteit
Een functie f is continu in een inwendig punt c van haar domein als

▪ De limiet bestaat (niet oneindig en LL = RL)
▪ De limiet = de functiewaarde in dat punt



Open bal B in IRn met middelpunt x0 en straal r
= je pakt een punt en alles in een cirkel errond is de open bal

▪ P is een randpunt als de bal punten van S als punten buiten S bevat (P1)
▪ P is een inwendig punt als een open bal bestaat rond P met enkel punten uit S (P2)
▪ P is een ophopingspunt als er in de omgeving nog een punt ligt dat tot S behoort (rand + inwendige)

Verzameling S

▪ Is open
▪ Is gesloten
▪ Is begrensd als er een M > 0 bestaat zodat een open bal met de oorsprong als middelpunt en straal M,
S bevat, dus S helemaal insluit, dan is de verzameling begrensd. Je kiest dus een open bal rond de
oorsprong met een willekeurig grote straal zodat heel de verzameling erin past, indien dit niet kan is de
verzameling onbegrensd (naar oneindig)

Limiet

𝐥𝐢𝐦 𝒇(𝒙) = 𝑳
𝒙→𝒙𝟎

Limiet L: als je een gebied rond L pakt met 𝜀 zal er in het xy-vlak
een open bal zijn zodat bij elke uitwijking (punt in de bal) je nog binnen
L – 𝜀 , L + 𝜀 zit → dit moet gelden zodat de limiet bestaat



Als voor iedere 𝜀 > 0 er een 𝛿 > 0 bestaat zodat voor alle x in S met x ≠ x0
geldt dat als x in de open bal ligt met middelpunt x0 en straal 𝛿, dan is
|𝑓(𝑥) − 𝐿| < 𝜀

, Bestaat de limiet van (x,y) → (x0,y0)?

▪ Bereken de limiet vanuit verschillende richtingen bv y = x of
y = x², y = 0, … en vervang dit in het functievoorschrift en bereken de
limiet, de limieten zouden gelijk moeten zijn om te bestaan
▪ Afvragen: bestaat er een open bal als je een random punt neemt


Continuïteit

lim 𝑓(𝑥) = 𝑓(𝑥0 )
𝑥→𝑥0

De limiet = de functiewaarde in x0, dan is de functie continu in x0



Is de functie f(x,y) continu in (x0,y0)?

▪ lim 𝑓(𝑥, 𝑦) Berekenen adhv l’hopital of andere technieken zoals verschillende paden benaderen
𝑥,𝑦→𝑥0 ,𝑦0
bv x = y of y = x², x = 0 en zo bekom je dus een functie van 1 variabele en kan je de limieten vergelijken of
speciale limieten zoals sin(x)/x
▪ Kijken of de limietwaarde = de functiewaarde om continu te zijn



Partieel afgeleiden
Een functie van 2 variabelen f(x,y) kan je naar x en naar y afleiden

▪ fx(x,y) → enkel de x als variabele beschouwen, de y is een constante (1ste afgeleide van f(x,y) naar x)


= de helling van de raaklijn van de snijlijn van de kromme met het vlak (y = y0) // met de x-as (variabele)
▪ fy(x,y) → nu is x een constante (1ste afgeleide van f(x,y) naar y)


= de helling van de raaklijn van de snijlijn van de kromme met het vlak (x = x0) // met de y-as (variabele)



Notaties voor partiële afgeleiden:




Eerste orde afgeleide kan je uitbreiden naar tweede orde afgeleiden




Hetgeen dat laatst staat dus eerst naar afleiden
2,99 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden


Ebenfalls erhältlich im paket-deal

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
BioEngineer Universiteit Gent
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
79
Mitglied seit
2 Jahren
Anzahl der Follower
7
Dokumente
81
Zuletzt verkauft
1 Jahren vor
Bio Engineer Stach

Uitgebreide samenvattingen die telkens alles vanuit de powerpoint + extra in de les gezegd, bevatten. Daarbij probeer ik dit altijd op een overzichtelijke en mooie manier voor te stellen, want niemand heeft gezegd dat studeren saai moet zijn. Indien vragen, stuur gerust een bericht. Ik doe zelf ook nog bio-ingenieur en heb met deze samenvattingen altijd moeiteloos kunnen slagen.

4,0

3 rezensionen

5
1
4
1
3
1
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen