1
Aufgabe
(i) 22 .
f(AVB7 f(A)rf(B)
=
FA,BCX
Sei
yef(AvB)c=> 7 xeArB:f(x)=Y
1 =
A:f(x) y)v(7x
c(7x = =
B:
-
f(x) y) =
1 3
=
yef(A) vyef(B)
2
xyef(A)rf(B)
=
Somit gilt f(AvB) f(A)uf(B) =
VA,BCK 4.e.d.
(ii) 2.2. f(AnB) 2 f(A)nf(B) FA,BCX
yeflAnB) c 5xeAnB:f(x)=Y
=
Sei
c
B1y f(x))
Ix:(xe An x =
=
=
1
(7x(xe Any f(x))n(7x(xeBry f(x)))
=
=
=
1
ye f(A) 1y=f(B)
=
c
3ye f(A)n f(B)
=
=(f(AnB)<f(A)nf(B) p.e.d.
(ii) Nein! Gegenbeispiel:
f:R-R, x x
-
A (13,B { 13
=
= -
f(AnB) f(0) 0 f(A)nf(B) [13e[13 [13
=
=
p.e.d.
= = =
(iv) 22. f(MUN) f (M) wfIN)
=
F
MINCY
Seiy ef"(MUN) ==> 5 xeMUN.f(x) Y =
(5 f(x) x)v(5 eN:f (x) y)
-
1 > M: x
=
x =
=
=
1 3
=
y e f (M) vy = f (N)
c 2
=
x f(M) Uf (N)
=
=cf (MUN) f-(M) rf-IN)
=
p.e. C.
, (V) 2.2. f(MN):f(M) ef(N) FMIN CY
Sei yefTMuN) cc
=
5xeMmN:fixl=y
1 Ix:(XeM1xeN ny fix))
=
=
1
(7 x(xeM1y f(x))n (7 x(xeNny f(x)))
=
=
=
1 2
=
ye fTM) 1 x fiN)
=
bijektiv, da
umkehrfunktion
=3
xe fi) n fiN
existiert ==
-
=L f "(MmN) f-r (M) f- (N) p.e.d.
-
=
e
Aufgabe
(i) 22 .
f(AVB7 f(A)rf(B)
=
FA,BCX
Sei
yef(AvB)c=> 7 xeArB:f(x)=Y
1 =
A:f(x) y)v(7x
c(7x = =
B:
-
f(x) y) =
1 3
=
yef(A) vyef(B)
2
xyef(A)rf(B)
=
Somit gilt f(AvB) f(A)uf(B) =
VA,BCK 4.e.d.
(ii) 2.2. f(AnB) 2 f(A)nf(B) FA,BCX
yeflAnB) c 5xeAnB:f(x)=Y
=
Sei
c
B1y f(x))
Ix:(xe An x =
=
=
1
(7x(xe Any f(x))n(7x(xeBry f(x)))
=
=
=
1
ye f(A) 1y=f(B)
=
c
3ye f(A)n f(B)
=
=(f(AnB)<f(A)nf(B) p.e.d.
(ii) Nein! Gegenbeispiel:
f:R-R, x x
-
A (13,B { 13
=
= -
f(AnB) f(0) 0 f(A)nf(B) [13e[13 [13
=
=
p.e.d.
= = =
(iv) 22. f(MUN) f (M) wfIN)
=
F
MINCY
Seiy ef"(MUN) ==> 5 xeMUN.f(x) Y =
(5 f(x) x)v(5 eN:f (x) y)
-
1 > M: x
=
x =
=
=
1 3
=
y e f (M) vy = f (N)
c 2
=
x f(M) Uf (N)
=
=cf (MUN) f-(M) rf-IN)
=
p.e. C.
, (V) 2.2. f(MN):f(M) ef(N) FMIN CY
Sei yefTMuN) cc
=
5xeMmN:fixl=y
1 Ix:(XeM1xeN ny fix))
=
=
1
(7 x(xeM1y f(x))n (7 x(xeNny f(x)))
=
=
=
1 2
=
ye fTM) 1 x fiN)
=
bijektiv, da
umkehrfunktion
=3
xe fi) n fiN
existiert ==
-
=L f "(MmN) f-r (M) f- (N) p.e.d.
-
=
e