100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Notizen

Transformations_Intégrales_Laplace_Fourier_Licence_3

Bewertung
-
Verkauft
-
seiten
4
Hochgeladen auf
25-11-2023
geschrieben in
2022/2023

Notes et résumé de cours sur les transformations intégrales (Laplace et Fourier), toutes les règles dont vous avez besoins pour résoudre vos exercices. Les mots sont en anglais basique mais la partie mathématiques est faciles à saisir.

Mehr anzeigen Weniger lesen
Hochschule
Kurs








Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Studium
Kurs
Unbekannt

Dokument Information

Hochgeladen auf
25. november 2023
Anzahl der Seiten
4
geschrieben in
2022/2023
Typ
Notizen
Professor(en)
Patrick
Enthält
Alle klassen

Themen

Inhaltsvorschau

V. Integrals transformations

1. Generalized integrals :

Let be 𝑓: 𝑥 ∈ [𝑎, 𝑏].

𝑏
Definition : ∫𝑎 𝑓(𝑥). 𝑑𝑥 is said to be convergent if its primitive 𝐹(𝑥) has a finite limit as 𝑡 ⟶
𝑏, and it is said to be divergent in the opposite sense. Note that 𝑏 can be finite (a number) or
infinite (∞).
+∞
• Integrals of type ∫𝑎 𝑓(𝑥). 𝑑𝑥 :

❖ Analysis by comparison :

Let 𝑓 and 𝑔 be two functions such that : ∀𝑥 ≤ 𝑎 ; 0 ≤ 𝑓(𝑥) ≤ 𝑔(𝑥)
+∞ +∞
▪ If ∫𝑎 𝑔(𝑥). 𝑑𝑥 converges, then ∫𝑎 𝑓(𝑥). 𝑑𝑥 converges.
+∞ +∞
▪ If ∫𝑎 𝑔(𝑥). 𝑑𝑥 diverges, then ∫𝑎 𝑓(𝑥). 𝑑𝑥 diverges.

❖ Analysis by equivalence :

Let 𝑓 and 𝑔 be two functions that are equivalent when 𝑥 ⟶ +∞. Then
+∞ +∞
∫𝑎 𝑓(𝑥). 𝑑𝑥 and ∫𝑎 𝑔(𝑥). 𝑑𝑥 are of the same nature.

+∞ 𝑑𝑥
❖ ∫𝑎 ; 𝑎 > 0, is convergente if and only if 𝛼 > 1.
𝑥𝛼

2. Laplace transformation :

Principle : The Laplace transform transforms a time-domain function 𝑓(𝑡). 𝑢(𝑡) into a
complex-valued function 𝐹(𝑝) ; 𝑝 ∈ ℂ, such that :
+∞

𝑭(𝒑) = ℒ[𝒇(𝒕). 𝒖(𝒕)] = ∫ 𝒇(𝒕)𝒆−𝒑𝒕 . 𝒅𝒕
𝟎

𝑝 = 𝑥 + 𝑖𝑦 is called the original, and ℒ(𝑝) is its image.

❖ Theorem 1 : Linearity

ℒ[𝑎𝑓1 + 𝑏𝑓2 ](𝑝) = 𝑎ℒ[𝑓1 ](𝑝) + 𝑏ℒ[𝑓2 ](𝑝)

❖ Theorem 2 : change of scale ; ∀ 𝑓 of summability 𝑥0 .

1 𝑝
▪ ∀𝑎 ∈ ℝ+
∗ ; ℒ[𝑓(𝑎𝑡)](𝑝) = 𝑎 ℒ [𝑓 (𝑎)] , if 𝑝 > 𝑎𝑥0 .
▪ ∀𝑎 ∈ ℝ ; ℒ[𝑒 𝑎𝑡 𝑓(𝑡)](𝑝) = ℒ[𝑓(𝑝 − 𝑎)] , ∀𝑝 > 𝑎 + 𝑥0 .

❖ Theorem 3 : derivative of the transform ; ∀ 𝑓
+∞
𝑑𝑛
𝑛
(ℒ(𝑓)(𝑝)) = ∫ (−𝑡 𝑛 )𝑒 −𝑝𝑡 𝑓(𝑡). 𝑑𝑡
𝑑𝑝
0
2,99 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
scienceexplore

Lerne den Verkäufer kennen

Seller avatar
scienceexplore Paris VI - Université Pierre et Marie Curie
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
0
Mitglied seit
2 Jahren
Anzahl der Follower
0
Dokumente
9
Zuletzt verkauft
-

0,0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen