100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Zusammenfassung Mathe für Ings 2: Teilbereich 1

Bewertung
-
Verkauft
-
seiten
6
Hochgeladen auf
26-08-2023
geschrieben in
2022/2023

Hi, Hier kannst du dir nur die 1. KK runterladen. Themen sind: Niveaumengen, Partielle Funktionen, Reihen und Folgen, Grenzwerte, Stetigkeit, Partielle Ableitungen, Gradient, Richtungsableitungen, Hessematrix und Definitheit. Schreib mir bei Fragen gerne:) Lass auch gerne eine Bewertung da

Mehr anzeigen Weniger lesen









Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Dokument Information

Hochgeladen auf
26. august 2023
Anzahl der Seiten
6
geschrieben in
2022/2023
Typ
Zusammenfassung

Themen

Inhaltsvorschau

Kurzklausur 1 bis Folie 21 am 03 . 05 .




E-UMGEBUNGEN Mengen

-Umgebungen sind Intervalle (Mengen) ,
welche entweder offen oder geschlossen sein können .




Offen :




Zahlenstrahl (Beispiel in R
·E A
A
I
a + E

irgendeine
Zahl


-
Intervall
offizielle
Definition :

Un(a) =

(keR/-à(s) -> Intervallschreibweise :
(a-Ex , a+ a)

-
Abstandsfuktion
abgeschlossen
:




Zahlenstrahl (Beispiel in R
a a + E
0 a
-

E
irgendeine
Zahl


2) E)
,

offizielle · Ha(a) =
(xeRF - a =

Intervallschreibweise : (a -E a +
-
Definition
Intervall


M
genevell gilt sind
Umgebungen offene Intervalle Normalfall
:



im (im
e-




R2 das
im sind
E-Umgebungen innere von Kreisen

M3 das innere
im sind
E-Umgebungen von
Kugeln
Menge
E radius
=
von
des
a
Kreises
E E
&

E
A




DER
Topologische Eigenschaften von
Mengen
:




Ein Punkt ED heißt innerer Punkt D, Denthalten ist
-Umgebung
a wenn eine die
~ . von es von ä
gibt, ganz in .




heißt offen, jeder Punkt Punkt ist
Bedingung
2 .
D wenn von D ein innerer .
:

Teil des Randes gehört zul
~kein



3 .
Ein Vektor E .
R" .
heißt Randpunkt
.
von D, wenn die
E-Umgebung Pa(b) von 5 mindestens einen Punkt aus D und mindestens einen Punkt


nicht aus D enthällt Die .
Menge aller Randpunkte heißt Rand


enthält
heißtabgeschlossen wennsiealle Randpunkte
4 .
ihre
Bedingung eine
-> ,




heißtbeschränkt wenns stehen
5 .
es

, könnte , a l te
unendlich großen
Menge enthalten sind (bei Megen geht das nicht

D heißt kompakt, beschränkt und ist
6 .
wenn D
abgeschlossen .




Beispiele

{(x y)(x 03 {(x y)/x y , y303
+
my 221 Dz
=


Dn =
, +
y
,
yz ny
,


für offen
bedingung für abgeschlossen bedingung




-
& ·
~ abgeschlossen
Komp
-
und h
ach




- >
⑫ X
~ offen (keine Randpunktel




-

, NIVEAUMENGEN Und PARTIELLE FUNKTIONEN
"Parabel Becher"
Z




E
f(x y) ,
=
x + y2

liegende" Partielle Funktion "fixieren
Il
In der Ebene Parabel :


:


eines Punkten laufen lassen
von nur einer
2
Beispiel :

/(f(n y) ,
=


n + y2 Variablen
23
=
2) {(x y)(x + y
- der "fixirte" Punkt
(r ,



ein
=
Nz =




Nn 13
z
=
E(x y) x2 ,
+ y =




gelassen f(x)
hat die Funktion :
=x -1
3x Gerade
-Tz

13
2
N =
{(x y))
, +2 +
y =
- Einheitskreis
Die sind die auf die X-Y-Ebene projizierten "Kreise"
Y
Niveaumengen



Beispiel Nirlaumengen berechnen und Skizzieren :




-

f(x y) ,
= n -
x
42 ,
z
=

0
, z
=

1
x
, =
2
1
Y
~ Einheitskreis
1 mit r = 1
z = 0 No
=
E(x y)ER(o , = z
= f(x, y)
+x
42E) x
-
=> 0 1 -
x2 + 1
1
= - =




=>
No
=


{(x y)ER),
+2 +
y
=


13



REIHEN UND FOLGEN wiederholung
unedliche
Zahlenfolge
:




heißt
Eine
Zahlenfolge
·


Lunedlich vielen) unedliche
Anordnung von Zahlen .




->
an, 82, 03

Satz von Bolzano-Weierstraß :

&




ol
konvergent :




zahlenfolge nähert sich einem Bestimmten Wert (z . B
. 0,
+ an



Beispiel
:




an
= läuft
gegen
S

divergent :

Zahlenfolge wird immer größer oder kleiner

Beispiel an n
.
3
: =




Grenzwerte berechnen Beispiel :




B
~
2
2) binomische Formel b) .(a+b)
ar

himn
b2
=

-
(n + (a
-
-



I
: -



+
.
1 3.




&




=
n +
1




. (n+ 2
-
n)
. (4+2+n)
+
1a - b) la

n +
1




. (n+ 2
-
n- +



n)
=


(n + 2 +




n+n k+ 2 = neue darstellg
2
.
=



gefunden"
=



n + 2 + n

-
lim
-
2


n + 1 1 muss weiter gekürzt werden
n +
(n + 2 + n) ↓ &




2 . n

.(1 + )
=2 .

N ·
1 + = -
N ·
1 + .
2 n +
=> =

n -

(1 +
2
+ N
n .. +
+ n . (n + +1) 1 +
2
+ 1
z

Grenzwertbetrachtung :




geht 2

3
2 n
. +
->
gegen grenzwert =
lim
:




-
n
1 +
2
+ 1
·geht gegen


#li 5x -> O


5 5
5 => lim =




6 +

-
d
höchste
O

Merke :
wenn Potenz gleich ist, sind die Zahlen davor die Grenzwerte
3,69 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
faitmarlene

Lerne den Verkäufer kennen

Seller avatar
faitmarlene Leibniz Universität Hannover
Profil betrachten
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
0
Mitglied seit
2 Jahren
Anzahl der Follower
0
Dokumente
4
Zuletzt verkauft
-

0,0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen