100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Prüfung

Stat 431 Assignment 3 solutions|very helpful

Bewertung
-
Verkauft
-
seiten
12
Klasse
A+
Hochgeladen auf
07-12-2022
geschrieben in
2022/2023

Stat 431 Assignment 3 solutions 1. [ 12 marks] (a) We start by fitting the interaction model logit(πi) = β0 + β1xi1 + β2xi2 + β3xi1xi2 The Wald-test for H0 : β3 (coefficient of interaction term) gives a p−value << 0.05, hence we can not drop the interaction term. Since we can not further simplify this model, it is the best logit model we can fit. [2] cells<-("", header=T) cells$resp<-cbind(cells$Cell, 200-cells$Cell) fit1<-glm(resp~tnf+ifn+tnf*ifn, family=binomial, data=cells) > summary(fit1) Call: glm(formula = resp ~ tnf + ifn + tnf * ifn, family = binomial, data = cells) Deviance Residuals: Min 1Q Median 3Q Max -5.2331 -3.4359 -0.7136 2.8511 4.8272 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -1.730e+00 7.055e-02 -24.524 < 2e-16 *** tnf 2.521e-02 1.353e-03 18.625 < 2e-16 *** ifn 1.068e-02 1.213e-03 8.798 < 2e-16 *** tnf:ifn 3.839e-04 8.499e-05 4.517 6.26e-06 *** --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 1309.96 on 15 degrees of freedom Residual deviance: 192.36 on 12 degrees of freedom AIC: 281.84 However, the deviance test indicate that this model is not adequate (compared to the saturated model). Interpretation [4] • exp(βb0) = 0.: odds of response when both TNF dose xi1 = 0 and IFN dose xi2 = 0. This odds is < 1, which means the probability of cell differentiation is very low (compared to no cell differentiation). • β2 is the change in the log odds of cell differentiation associated with 1 unit of increase in IFN, when TNF dose xi1 = 0. As βb2 = 1.068, the log odds (or the probability) of cell differentiation increase as IFN dose increases, when TNF dose is zero. • When the dose of TNF (xi1) increase by 1 unit, the log odds of response change by β1 + β3xi2, which is a linear function of IFN dose (xi2). – βb1 = 2.521 is the amount of increase in log odds due to 1 unit of increase in TNF, when IFN dose xi2 =

Mehr anzeigen Weniger lesen
Hochschule
Kurs









Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Hochgeladen auf
7. dezember 2022
Anzahl der Seiten
12
geschrieben in
2022/2023
Typ
Prüfung
Enthält
Fragen & Antworten

Themen

Inhaltsvorschau

Stat 431 Assignment 3 solutions


1. [ 12 marks]

(a) We start by fitting the interaction model




!
st
logit(πi ) = β0 + β1 xi1 + β2 xi2 + β3 xi1 xi2




po
The Wald-test for H0 : β3 (coefficient of interaction term) gives a p − value << 0.05,
hence we can not drop the interaction term. Since we can not further simplify this
model, it is the best logit model we can fit. [2]




t
no
cells<-read.table("cells.txt", header=T)
cells$resp<-cbind(cells$Cell, 200-cells$Cell)

fit1<-glm(resp~tnf+ifn+tnf*ifn, family=binomial, data=cells)




o
> summary(fit1)




D
Call:
glm(formula = resp ~ tnf + ifn + tnf * ifn, family = binomial,




-
data = cells)




ht
Deviance Residuals:
Min 1Q Median 3Q Max
-5.2331 -3.4359 -0.7136 2.8511 4.8272
ig
yr
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.730e+00 7.055e-02 -24.524 < 2e-16 ***
op

tnf 2.521e-02 1.353e-03 18.625 < 2e-16 ***
ifn 1.068e-02 1.213e-03 8.798 < 2e-16 ***
tnf:ifn 3.839e-04 8.499e-05 4.517 6.26e-06 ***
C



---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
e




(Dispersion parameter for binomial family taken to be 1)
th




Null deviance: 1309.96 on 15 degrees of freedom
Residual deviance: 192.36 on 12 degrees of freedom
ns




AIC: 281.84
ow




However, the deviance test indicate that this model is not adequate (compared to
the saturated model).
r




Interpretation [4]
to




• exp(βb0 ) = 0.1772844: odds of response when both TNF dose xi1 = 0 and IFN
c




dose xi2 = 0. This odds is < 1, which means the probability of cell differentiation
ru




is very low (compared to no cell differentiation).
• β2 is the change in the log odds of cell differentiation associated with 1 unit
st




of increase in IFN, when TNF dose xi1 = 0. As βb2 = 1.068, the log odds (or
In




the probability) of cell differentiation increase as IFN dose increases, when TNF
dose is zero.
• When the dose of TNF (xi1 ) increase by 1 unit, the log odds of response change
by β1 + β3 xi2 , which is a linear function of IFN dose (xi2 ).
– βb1 = 2.521 is the amount of increase in log odds due to 1 unit of increase in
TNF, when IFN dose xi2 = 0.

1

, – We see that βb3 = 3.839 (the slope of the change in log odds), it means
that the higher the dose of IFN, the bigger the increase in log odds of cell
differentiation due to the increase of TNF dose.
In summary, the significant positive effect of interaction term β3 implies
that, the higher the TNF dose, the stronger the impact of IFN dose on the
probability of cell differentiation, and vice versa.




!
st
• Similarly when the dose of IFN dose (xi2 ) increase by 1 unit, the log odds of




po
response change by β2 + β3 xi1 , which is a linear function of TNF dose (xi1 ).
– βb2 = 1.068 is the amount of increase in log odds due to 1 unit of increase in




t
IFN, when TNF dose xi1 = 0.




no
(b) Deviance residuals plots demonstrate the poor fit of the selected logistic model in
(a), which agrees with the Deviance test result. [2]




o
D
-
ht
5




5




5
DEVIANCE RESIDUALS




DEVIANCE RESIDUALS




DEVIANCE RESIDUALS
ig
0




0




0
yr
op
-5




-5




-5
C



0 20 40 60 80 100 0 20 40 60 80 100 0.2 0.4 0.6 0.8 1.0

TNF dose IFN dose FITTED VALUE
e
th




rd <- residuals.glm(fit1,"deviance")
fv <- fit1$fitted.values
ns




par(mfrow=c(1, 3))
plot(cells$tnf, rd,ylim=c(-8,8), xlab="TNF dose",ylab="DEVIANCE RESIDUALS")
abline(h=-2); abline(h= 2)
ow




plot(cells$ifn, rd,ylim=c(-8,8), xlab="IFN dose",ylab="DEVIANCE RESIDUALS")
abline(h=-2); abline(h= 2)
plot(fv, rd,ylim=c(-8,8), xlab="FITTED VALUE",ylab="DEVIANCE RESIDUALS")
abline(h=-2); abline(h= 2)
r
to




(c) The best fitted cloglog model is the main effects model [2]
c




log(− log(1 − πi )) = β0 + β1 xi1 + β2 xi2
ru




However, changing to cloglog link seems do not improve the fit at all, and the residual
st




plots are equally bad as the logit model. [2]
In




2
7,42 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
Abbyy01 Exam Questions
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
91
Mitglied seit
3 Jahren
Anzahl der Follower
33
Dokumente
1121
Zuletzt verkauft
3 Jahren vor

3,5

13 rezensionen

5
5
4
2
3
3
2
1
1
2

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen