100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Summary Management Research Methods 1 (MRM BA1): Received grade: 8.5 ()

Bewertung
4,0
(1)
Verkauft
28
seiten
39
Hochgeladen auf
02-12-2022
geschrieben in
2022/2023

I made a summary of Management Research Methods 1. This summary will help you with your upcoming exam, as my grade was an 8.5. If you also do the exercises given in class, you should be fine! This summary is written for the course Management Research Methods 1 in the Pre-Master of Business Administration program at the University of Amsterdam .

Mehr anzeigen Weniger lesen
Hochschule
Kurs











Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Hochgeladen auf
2. dezember 2022
Anzahl der Seiten
39
geschrieben in
2022/2023
Typ
Zusammenfassung

Themen

Inhaltsvorschau

Summary MRM BA 1
Lecture 1




Data has a fixed structure. It consists of a number of properties (variables)  each column
represents one variable.

Measured from a set of things/people/etc (units)  each row represents one unit.

Levels of measurement:
1. Categorical (entities are divided into distinct
categories):
 Binary variable (two outcomes), e.g.
dead or alive.
 Nominal variable, e.g. whether
someone is an omnivore, vegetarian
or vegan.
 Ordinal variable, e.g. bad,
intermediate, good.

2. Numerical:
 Discrete data (counts), e.g.: number of defects.
 Continuous (entities get a distinct score), e.g. temperature, body length.

Variables can be converted to a lower level of measurement. For example, from:
- Body length ≤ 160cm → small
- Body length > 160cm and < 180cm →normal
- Body length ≥ 180cm → tall
This implies a loss of information. It is not reversible. For example, if you know that “body length =
normal”, the exact amount of cm’s cannot be retrieved (herwinnen).

The lower the amount of information in your data, the larger your sample needs to be.




1

,In quantitative research, you need to motivate and document the way you collected data:
- Is the sample representative?
- Is the data valid?
- Is there measurement error?

Is the sample representative? Generalize findings in a sample to an entire population.
- Measure firm’s revenue for 3 weeks  generalize to the full 52 weeks.
- Measure outside temperature for 5 days  generalize to the entire month.
- Ask 1000 people who they will vote on at the elections  predict outcome of entire country.

Representativeness: statistics only gives conclusions about the population you have sampled from.
- Measure firm’s revenue for 3 weeks in October  conclusions not valid for July.
- Measure outside temperature for 5 days in September  conclusions not valid for whole
year.
- Ask 1000 people at Woodstock who they’ll vote on  probably not representative for
election results.

Questions to ask:
- What is the population?
- How to make my sample representative for that population?
Usually random sampling:
- Assign numbers to all units in the population.
- Let a computer draw randomly 30 numbers.
- Include these observations in your sample.

Validity: Do the data reflect what they should reflect? And can they be used to answer the research
question?
- Data should be checked for errors and mistakes (“face validity check”).
- Multiple people involved in measurement: did everybody know the measurement
procedure?
- Were there other problems / irregularities during measurement?
Measurement error: the discrepancy (verschil) between the actual value we are trying to measure,
and the number we use to represent that value. Example: you (in reality) weigh 80 kg. According to
your bathroom scale, you weigh 83 kg. The measurement error is 3 kg.


2

,! There are two types of measurement error:
1. Systematic: difference between the average measurement result and the true value. E.g.:
clocks on mobile phones are regularly synchronised with online time servers.
2. Random: unsystematic deviations (afwijkingen) due to imprecision of the measurement
system. E.g.: for ice skating at the winter olympics, multiple time measurement systems are
used to decide who is the winner.

Difference systematic error and bias  Bias general name so it’s the same.

Describing data: you usually do not recite (opsommen) an entire dataset when someone asks you
what is in it. You summarize it in a few numbers.

Median: the middle score when data is ordered. More robust against outliers in stead of the mean.

Mean: the sum of the data divided by the amount of data. This is meant by the average in statistics.




Question: what does a mean lower than median indicate? A significant discrepancy between the
median and the mean, in which the mean is lower than the median, indicates negative skewness in
the data.

Range: the smallest value subtracted from the largest. This is very sensitive to outliers.




Interquartile range: the range of the middle 50% of the data.




Variance: the average squared distance between each point and the mean of the data.



Standard deviation: the square root of the variance.



Question: why is the standard deviation preferred over the variance as the metric for dispersion to
report in analyses? Because the standard deviation is easier to interpret than the variance as it has
the same measurement unit as the variable
under consideration.

3

, dispersion = spreiding




Confidence interval:
- When we estimate something (mean, standard deviation, correlation, etc.), we make
sampling error (a different sample will contain different estimates).
- Which means: X ≠ 𝜇 in general.
- However: X will be close to or around 𝜇.
- Specifically, in 95% of cases, we will find X such that




Skew:
- The asymmetry of the distribution
- Positive skew (scores bunched at low values with the tail pointing to high values).
- Negative skew (scores bunched at high values with the tail pointing to low values).




Mode: the most frequent score
Bimodal: having two modes
Multimodal: having several modes




4

Bewertungen von verifizierten Käufern

Alle Bewertungen werden angezeigt
2 Jahr vor

4,0

1 rezensionen

5
0
4
1
3
0
2
0
1
0
Zuverlässige Bewertungen auf Stuvia

Alle Bewertungen werden von echten Stuvia-Benutzern nach verifizierten Käufen abgegeben.

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
romytempelman Universiteit van Amsterdam
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
221
Mitglied seit
7 Jahren
Anzahl der Follower
149
Dokumente
21
Zuletzt verkauft
2 Jahren vor

Na mijn HAVO-diploma (2018) ben ik een jaar VWO gaan doen. Op dit moment ben ik bezig met mijn master Business Administration aan de Universiteit van Amsterdam. Ik verkoop via deze weg mijn samenvattingen omdat ik ze niet meer gebruik, maar iemand anders er wellicht wel wat aan heeft!

4,4

44 rezensionen

5
20
4
22
3
0
2
2
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen