100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Artificial Intelligence & Neurocognition Summary (Leiden University 2021/22)

Bewertung
-
Verkauft
3
seiten
34
Hochgeladen auf
07-11-2022
geschrieben in
2022/2023

Summary of the 6 lectures of Artificial Intelligence & Neurocognition (Leiden University 2021/22) - Passed the exam with an 8.5

Hochschule
Kurs











Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Hochgeladen auf
7. november 2022
Anzahl der Seiten
34
geschrieben in
2022/2023
Typ
Zusammenfassung

Themen

Inhaltsvorschau

Lecture 1 – Introduction and History of Artificial
Intelligence
What is Artificial Intelligence

Thinking Humanly Thinking Rationally

AI = Balance

Acting Humanly Acting Rationally

- Cognitive Psychology: Study of computations that make it possible to perceive reason
and act
- AI: branch of computer science that studies how to build computers to enable them to
do what minds can do
- AI draws from Computer Science and Psychology
o Psych: Greater emphasis on perception, reasoning, and action than CS
o CS: Greater emphasis on computation than psychology

Why AI in Psychology?
- Inverse Problem (Psychology)
o Set of observations
o We try to infer the process of such observations
o Such inferences are limited, sometimes even impossible to make → million
underlying reasons why behaviour (observations) come about
o AI allows for Forward Modelling
§ We design a simple system and see how it behaves
§ E.g., cognitive robotics
§ Where AI and computational psychology meet

How did the field of AI develop?




1

,- Philosophy of mind
o How physical brain give rise to mental mind?
o Descartes: Dualism because mind is not physical
o Materialists: all mental states are caused by (or identical to) physical states →
strong AI possible
1940s
- Warren McColloch and Walter Pitts’ three principles (about what neurons can do)
o Basic Physiology (biological foundations about neurons)
o Propositional Logic (If-Then)
o Turing’s theory of computation (any computation can be executed by a machine
with big enough capacity)
è These principles proved that
o Any computable function can be computed by a network of neurons
o All logical operators can be implemented by simple neural networks (logical
operators)

Weak vs. Strong AI
- Weak AI: Turing Test
o Non-Sentient AI
o Turing’s Imitation Game: machine is intelligent if we CANNOT distinguish it from a
human in conversation
§ NO claims about underlying principles
§ How does it determine intelligence?
• Complex grammatical structures (used by chatbots, not humans)
• Realistic world knowledge (e.g., missing context of conversation)
§ Searle: only Brains can cause minds/intelligence → only a collection of
cells/physical-chemical properties

o Chinese Room Argument:
§ Foundation:
• In a room in China, does not speak Chinese, people outside write him
questions in Chinese, he must answer in Chinese, has books with every
answer in there (even if he does not understand them) so he can answer
correctly
• To Chinese outside → responder obviously speaks Chinese (even if we
know he does not)
• Any computer passing the Turing Test has same architecture → would be
intelligent? → no, it’s a very simple but stupid architecture (rule-based
manipulation)
• Does not represent true intelligence or sentience!
§ Replace neurons with Chinese room → how many neurons connected to
Chinese Rooms would stop true ‘intelligence’
o Weak AI is just rule-based manipulation of symbols

- Strong AI
o Intelligent systems can actually think
o Computational calculations are always the same, does not matter if brain or chip


2

, o Should have connectivist architecture (like neurons)
o Problems:
§ Can machines think?
• Matter of language
• Are we asking the right questions?
• Human mind is an information processing system and thinking is a form of
computing
§ Will a simulated human mind have all the same properties as real human
minds?

1950s
- Minsky and Edmond’s SNARC: First neural network computer with 40 neurons → Is it
mathematics? → If not now, it will be in the future
- Dartmouth Conference in 1956: birth of AI
o Computer Science, Mathematics, Cognitive Science
o Coined term AI

1980s
- Intelligence = Manipulation of Physical Symbol Systems
o Beforehand: Idea that Machines can never to X
o Now: proving that they can do
§ Checkers
§ Chess
§ Formal theorem proving

- Symbolic AI (GOFAI – Good Old-Fashioned AI):
o NOT concerned with neurophysiology
o Propositional Logic: Human thinking = symbol manipulation = IF (A>B) AND (B>C)
THEN (A>C)
o Intelligence = symbols and relationship between them
o Lead to knowledge-based, expert systems were huge success (e.g., MYCIN)

- 1965: ELIZA
o Natural language processor, Create illusion of understanding, Mimic
psychotherapist
o Response from public: computers can have conversations!
o Weizenbaum: Anthromorphisation of computers is a mind trick
o How does she work?
§ Looks for keywords
§ Look in database for rules, constructs new sentences using keywords and
database

- 1972: PARRY
o Modified Turing Test, simulated paranoid schizophrenia patient → since they
normally talk chaotically and meaningless it seemed realistic
o Only 48% of psychiatrists were able to tell him from real patients



3

, - STRIPS
o Stanford Research Institute Problem Solver: automated planner
o Realization of goals (make coffee) → divide task into subgoals (turn on coffee
maker etc.), identify necessary actions
§ Certain hierarchies on what to do first but also irrelevant things (like putting
sugar or milk in first)
o Early action planners were susceptible to Sussman anomaly
§ Exceptions to rules, stacking blocks on top of each other with constraint that
only one block allowed to be moved at one time, easy to solve subgoals but
one subgoal solved with one move may hinder second subgoal

- Expert Systems: MYCIN
o Emulates the decision-making ability of a human expert → physicians
o E.g., MYCIN recommends treatment for certain
blood infections
§ Propositional Logic: Simple If-Then rules
§ Better than actual physicians
§ Never used in practice because of ethical
and legal difficulties (who do we blame if sth goes wrong?)

1970-80s
- Overconfidence in AI systems led to AI winter
- AI not as powerful as many thought
- Many questions: how do we deal with perception, robotics, learning, pattern
recognition?
è Symbolic AI does not suffice

2000s
- Symbolic AI criticism
o Seems unnecessary for many behaviours
o Untransparent processes: Unclear how processes like pattern recognition would
work in symbolic way
o Representations dealing with noisy input are needed

- Connectionist AI
o Study of artificial neural networks (ANNs) to explain cognition
o Early PDP work: McCelland 1981
§ Model of human memory
• Memory is content-addressable (if you want to activate memory, think
about something similar/associated to it)
• Memory not stored in neurons but in connections BETWEEN them →
Synapses, Connection Weights!




4
6,99 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
breebay Universiteit Leiden
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
30
Mitglied seit
4 Jahren
Anzahl der Follower
20
Dokumente
7
Zuletzt verkauft
2 Jahren vor

4,0

1 rezensionen

5
0
4
1
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen