Dynamik
1.4 Geschwindigkeit im Raum
1. Bewegung 𝑟⃗(𝑡) beschreibt die Lage im Raum (wie s in der Ebene)
𝑟⃗(𝑡+∆𝑡)−𝑟⃗(𝑡) 𝑑𝑟⃗
1.1 Kenngröße Geschwindigkeit: Geschwindigkeitsvektor: 𝑟⃗̇ = 𝑣⃗(𝑡) = lim = ∆𝑡 𝑑𝑡
∆𝑡→0
⃗⃗(𝑡+∆𝑡)−𝑣
𝑣 ⃗⃗(𝑡) ⃗⃗
𝑑𝑣
s(t) -> 𝑠̇ (t) = v(t) -> 𝑠̈ (𝑡) = 𝑣(𝑡) = a(t), somit ist umgekehrt: Beschleunigungsvektor: 𝑎⃗̇ = 𝑣⃗̇ = 𝑟⃗̈ = lim ∆𝑡
= 𝑑𝑡
∆𝑡→0
a(t) -> ∫ 𝑎 𝑑𝑡 + 𝑣0 = 𝑣(𝑡) -> ∫ 𝑣 𝑑𝑡 + 𝑆0 = 𝑆(𝑡)
𝑠 𝑚 𝑘𝑚
Geschwindigkeit: 𝑣= ( ) ∗ 3,6 = ( )
𝑡
Gleichförmige Bewegung > v = konst.
𝑠 ℎ
2. Wurf
∆𝑠 𝑠 −𝑠 2.1 Senkrechter Wurf nach oben/unten:
Mittlere Geschwindigkeit: 𝑣 = ∆𝑡 = 𝑡1 −𝑡0
1 0
∆𝑠 Geschwindigkeit: 𝑣(𝑡) = 𝑣0 − 𝑔 ∙ 𝑡 𝑣(𝑡) = 𝑣0 + 𝑔 ∙ 𝑡
Momentan Geschwindigkeit: 𝑣= lim = 𝑠̇ 1 2
∆𝑡→0 ∆𝑡 2
𝑔𝑡 −ℎ0
𝑠𝑔𝑒𝑠
Abwurfgeschwindigkeit: 𝑣0 =
𝑡
Durchschnitts Geschwindigkeit: 𝑣=𝑡
𝑔𝑒𝑠 Beschleunigung: 𝑎(𝑡) = −𝑔 𝑎(𝑡) = 𝑔
________________________________________________________________ 1 1
Position: 𝑦(𝑡) = 𝑦0 + 𝑣0 ∙ 𝑡 − 𝑔 ∙ 𝑡² 𝑦(𝑡) = 𝑦0 − 𝑣0 ∙ 𝑡 − 𝑔 ∙ 𝑡²
1.2 Kenngröße Beschleunigung: 2 2
1
𝑦(𝑡) = 𝑣0 ∙ 𝑡 − 𝑔 ∙ 𝑡²
𝑣 𝑚 2
Konst. Beschl. Bewegung: 𝑎= 𝑡
(𝑠2 ); ∆𝑣 & ∆𝑡 sind gleich Steigzeit: 𝑡𝑠 =
𝑣0
𝑔
∆𝑣 (𝑣0 )²
Mittlere Beschl.: 𝑎= ∆𝑡
; ∆𝑣 & ∆𝑡 sind nicht gleich Max. Wurfhöhe: ℎ(𝑡𝑠 ) = ℎ0 +
2∙𝑔
𝑣(𝑡−∆𝑡)−𝑣(𝑡) 𝑑𝑣 𝑣0 ±√(𝑣0 )2 +2∙𝑔∙𝑦0
Momentan Beschl.: 𝑎= lim ∆𝑡
= 𝑑𝑡
= 𝑣̇ ; v ableiten Wurfdauer: 𝑡𝑤 = 2 ∙ 𝑡𝑠 𝑡𝑤 = 𝑡1/2 =
−𝑔
∆𝑡→0
−𝑣0 ±√(𝑣0 )2 +2∙𝑔∙𝑦0
Mit Anfangshöhe 𝑡𝑤 = 𝑡1/2 = −𝑔
1.3 Gleichmäßig beschleunigte Bewegung:
________________________________________________________________
∆𝑣 𝑣−𝑣0
Beschleunigung: 𝑎(𝑡) = = = 𝑘𝑜𝑛𝑠𝑡. 2.2 Waagrechter Wurf:
∆𝑡 𝑡
Erreichte Geschwindigkeit: 𝑣(𝑡) = 𝑣0 + 𝑎 ∙ ∆𝑡 Geschwindigkeit: 𝑣𝑥 (𝑡) = 𝑣0 𝑣𝑦 (𝑡) = −𝑔 ∙ 𝑡 𝑣(𝑡) = √(𝑣𝑥 ) + (𝑣𝑦 )²
𝑣(𝑡) = √𝑣02 ± 2 ∙ 𝑎 ∙ (𝑠 − 𝑠0 ) Beschleunigung: 𝑎𝑥 (𝑡) = 0 𝑎𝑦 (𝑡) = −𝑔 𝑎(𝑡) = −𝑔
1
𝑣+𝑣0 Position: 𝑥(𝑡) = 𝑣𝑥 (𝑡) ∙ 𝑡 = 𝑣0 ∙ 𝑡 𝑦(𝑡) = ℎ0 − 𝑔𝑡²
2
Mittlere Geschwindigkeit: 𝑣𝑚 = 2 Wurfweite: 𝑥𝑚𝑎𝑥 = 𝑣0 ∙ 𝑡𝑤
1 𝑣+𝑣0 1
Zurückgelegter Weg: 𝑠 = 𝑠0 + 𝑣𝑚 ∙ 𝑡 = 𝑣 ∙ 𝑡 = 𝑠0 + ∙ 𝑡 = 𝑠0 + 𝑣0 ∙ 𝑡 + 𝑎 ∙ ∆𝑡² Wurfzeit: y(t)=0 → 𝑡𝑤 = √
2∙ℎ0
2 2 2 𝑔
𝑠 2𝑠 𝑣 𝑣 2 2(𝑠−𝑠0 ) Max. Wurfhöhe: 𝑦𝑚𝑎𝑥 = ℎ0
Beschleunigungszeit: 𝑡=𝑣 = 𝑣
= − 𝑎0 ± √(𝑎0 ) + 𝑎0 9 x(t) nach t umformen und in y(t)
𝑚 0 0 Bahngleichung: 𝑦(𝑥) = − ∙ 𝑥 2 + ℎ0
𝑔 2∙𝑣02 einsetzen
Gleichung f. Bew.-Bahn: 𝑦(𝑥) = tan 𝛼 ∙ 𝑥 −
2∙𝑣0 ²∙𝑐𝑜𝑠²𝛼
∙ 𝑥² (ausm Ursprung)
|𝑣𝑦 (𝑡𝑤 )| |−𝑔∙𝑡𝑤 | √2𝑔ℎ0
Aufprallwinkel: tan 𝛼 = |𝑣𝑥 (𝑡𝑤 )|
= |𝑣0 |
=
𝑣0
, ________________________________________________________________
2.3 Schräger Wurf: 3.2 beschleunigte Drehbewegung
Anfangsgeschwindigkeit: 1 1
𝑣𝑥 (𝑡0 ) = 𝑣0 ∙ cos 𝛼 𝑣𝑦 (𝑡0 ) = 𝑣0 ∙ sin 𝛼 Drehwinkel: 𝜑 = 𝜔𝐴 ⋅ 𝑡 + 2 ⋅ 𝛼 ⋅ 𝑡 2 = 𝜔𝐴 ⋅ 𝑡 + 2 (𝜔𝜖 − 𝜔𝐴 ) ⋅ 𝑡
Geschwindigkeit: 𝑣𝑥 (𝑡) = 𝑣0 ∙ cos 𝛼 = 𝑘𝑜𝑛𝑠𝑡. 𝜔𝐴 +𝜔𝜖
𝜑=( 2
)⋅𝑡
𝑣𝑦 (𝑡) = 𝑣0 ∙ sin 𝛼 − 𝑔𝑡 360°
Umwandlung: 𝜑 (𝑖𝑛 𝑟𝑎𝑑) =
Beschleunigungen: 𝑎𝑥 (𝑡) = 0 𝑎𝑦 (𝑡) = −𝑔 2𝜋
1 Winkelgeschwindigkeit: 𝜔𝜖 = 𝜔(𝑡) = 𝜔𝐴 + 𝛼 ⋅ 𝑡 → 𝜑̇
Position: 𝑥(𝑡) = 𝑣0 ∙ cos 𝛼 ∙ 𝑡 𝑦(𝑡) = 𝑠0 + 𝑣0 ∙ sin 𝛼 ∙ 𝑡 − 𝑔𝑡²
2
𝛥𝜔 𝜔𝜖 −𝜔𝐴
Winkelbeschleunigung: 𝛼= 𝛥𝑡
= 𝑡
→ 𝜑̈
𝑣² (𝑟∙𝜔)²
Normalbeschleunigung: 𝑎𝑛 = = = 𝑟 ∙ 𝜔²
−𝑣0 ∙𝑠𝑖𝑛𝛼±√(𝑣0 ∙𝑠𝑖𝑛𝛼)2 +2∙𝑔∙𝑦0 𝑟 𝑟
Wurfzeit: 𝑡𝑤 = 𝑡𝑠 + 𝑡𝐹 mit 𝑡𝑤 =
−𝑔
mit Anf.höhe Tangentialbeschleunigung: 𝑎𝑡 = 𝑟 ⋅ 𝛼
𝑣0 ∙𝑠𝑖𝑛𝛼
mit 𝑡𝑠 = Bahnbeschleunigung: 𝑎⃗ = ⃗⃗⃗⃗
𝑎𝑡 + ⃗⃗⃗⃗⃗
𝑎𝑛 nicht beschleunigt, dann nur 𝑎𝑡 = 0
𝑔
2∙𝑣0 ∙𝑠𝑖𝑛𝛼
Ohne Anf.höhe
𝑡𝐹 = 𝑡𝑠 → 𝑡𝑤 =
𝑔
𝑛 = 𝑘𝑜𝑛𝑠𝑡, 𝑣 = 𝑘𝑜𝑛𝑠𝑡
(𝑣0 )²∙(𝑠𝑖𝑛𝛼)²
Wurfhöhe: 𝑦(𝑡𝑠 ) = 𝑦0 +
2∙𝑔
−𝑣0 ∙𝑠𝑖𝑛𝛼±√(𝑣0 ∙𝑠𝑖𝑛𝛼)2 +2∙𝑔∙𝑦0
Wurfweite: 𝑥(𝑡𝑤 ) = 𝑣0 ∙ 𝑐𝑜𝑠𝛼 ∙
−𝑔
mit Anf.höhe
2∙𝑣0 ∙𝑠𝑖𝑛𝛼 𝑣0 ²∙𝑠𝑖𝑛2𝛼
𝑥(𝑡𝑤 ) = 𝑣0 ∙ 𝑐𝑜𝑠𝛼 ∙ = Ohne Anf.höhe
𝑔 𝑔
Bahngleichung: 𝑦(𝑥) = 𝑦0 + tan 𝛼 ∙ 𝑥 −
𝑔
∙ 𝑥², mit 𝑦0 als Anfangshöhe
4. Polarkoordinaten:
2∙𝑣0 ²∙𝑐𝑜𝑠²𝛼
________________________________________________________________
cos 𝜑(𝑡) −sin 𝜑(𝑡) −sin 𝜑(𝑡) −cos 𝜑(𝑡)
𝑒𝑟 = ( sin 𝜑(𝑡) )
⃗⃗⃗⃗ 𝑒𝜑 = ( cos 𝜑(𝑡) )
⃗⃗⃗⃗⃗ 𝑒⃗⃗⃗⃗𝑟̇ = 𝜑̇ ( cos 𝜑(𝑡) ) ̇
𝑒⃗⃗⃗⃗⃗
𝜑 = 𝜑̇ ( −sin 𝜑(𝑡) )
3. Kreisbewegungen:
Umfang Kreis: 𝑈 =𝑑∙𝜋 𝑒⃗⃗⃗⃗𝑟̈ = 𝜑̈ ∙ ⃗⃗⃗⃗⃗
𝑒𝜑 − 𝜑̇ 2 ∙ ⃗⃗⃗⃗
𝑒𝑟
Fläche: 𝐴 = 𝜋𝑟 2 Geschwindigkeit: 𝑣⃗(𝑡) = 𝑟⃗̇ = 𝑟̇ ⋅ ⃗⃗⃗⃗ 𝑒𝜑 ➔
𝑒𝑟 + 𝑟 ⋅ 𝜑̇ ∙ ⃗⃗⃗⃗⃗ 𝑣⃗(𝑡) = ⃗⃗⃗⃗
𝑣𝑟 + ⃗⃗⃗⃗⃗
𝑣𝜑
𝜋∗𝑟𝑎𝑑 180
Umrechnung Grad in Rad: 1° = 180
; 1 𝑟𝑎𝑑 = 𝜋
≈ 57,3° Beschleunigung: 𝑎⃗(𝑡) = 𝑟⃗̈ = (𝑟̈ − 𝑟𝜑̇ ) ⋅ ⃗⃗⃗⃗
2
𝑒𝑟 + (𝑟 ⋅ 𝜑̈ + 2𝑟̇ 𝜑̇) ⋅ ⃗⃗⃗⃗⃗
𝑒𝜑
2
3.1 Gleichförmige Drehbewegung: 𝑎𝑟 = 𝑟̈ − 𝑟𝜑̇
𝑎⃗ = ⃗⃗⃗⃗⃗
𝑎𝑟 + ⃗⃗⃗⃗⃗⃗,
𝑎𝜑 für r konst.
𝑎𝜑 = 𝑟 ⋅ 𝜑̈ + 2𝑟̇ 𝜑̇
𝑘 1
Drehfrequenz: 𝑛= 𝑡
(𝑚𝑖𝑛); mit k als Anzahl der Umläufe
𝜑 Sonderfall: 𝑎⃗ = −𝑟𝜑̇ 2 ⋅ ⃗⃗⃗⃗
𝑒𝑟 + 𝑟 ⋅ 𝜑̈ ⋅ ⃗⃗⃗⃗⃗
𝑒𝜑 𝑓ü𝑟 𝑟 = 𝑘𝑜𝑛𝑠𝑡.
Anzahl der Umläufe: 𝑘= 2𝜋
𝑟∙𝜑 𝑚 𝝋 = 𝝋(𝒕)!!!!!
Geschwindigkeit: 𝑣 =𝑑∙𝜋∙𝑛 = = 𝜔 ∙𝑟( )
𝑡 𝑠
Strecke für k-Umläufe: 𝑠 =𝑑∙𝜋∙𝑘
Ort der Bahnkurve mittels Drehwinkel 𝜑: 𝑠 = 𝑟 ∗ 𝜑
𝜑 2𝜋
Winkelbeschleunigung: 𝜔= 𝑡
= 2𝜋𝑛 = 𝑇 (𝑃𝑒𝑟.𝐷𝑎𝑢𝑒𝑟)
1.4 Geschwindigkeit im Raum
1. Bewegung 𝑟⃗(𝑡) beschreibt die Lage im Raum (wie s in der Ebene)
𝑟⃗(𝑡+∆𝑡)−𝑟⃗(𝑡) 𝑑𝑟⃗
1.1 Kenngröße Geschwindigkeit: Geschwindigkeitsvektor: 𝑟⃗̇ = 𝑣⃗(𝑡) = lim = ∆𝑡 𝑑𝑡
∆𝑡→0
⃗⃗(𝑡+∆𝑡)−𝑣
𝑣 ⃗⃗(𝑡) ⃗⃗
𝑑𝑣
s(t) -> 𝑠̇ (t) = v(t) -> 𝑠̈ (𝑡) = 𝑣(𝑡) = a(t), somit ist umgekehrt: Beschleunigungsvektor: 𝑎⃗̇ = 𝑣⃗̇ = 𝑟⃗̈ = lim ∆𝑡
= 𝑑𝑡
∆𝑡→0
a(t) -> ∫ 𝑎 𝑑𝑡 + 𝑣0 = 𝑣(𝑡) -> ∫ 𝑣 𝑑𝑡 + 𝑆0 = 𝑆(𝑡)
𝑠 𝑚 𝑘𝑚
Geschwindigkeit: 𝑣= ( ) ∗ 3,6 = ( )
𝑡
Gleichförmige Bewegung > v = konst.
𝑠 ℎ
2. Wurf
∆𝑠 𝑠 −𝑠 2.1 Senkrechter Wurf nach oben/unten:
Mittlere Geschwindigkeit: 𝑣 = ∆𝑡 = 𝑡1 −𝑡0
1 0
∆𝑠 Geschwindigkeit: 𝑣(𝑡) = 𝑣0 − 𝑔 ∙ 𝑡 𝑣(𝑡) = 𝑣0 + 𝑔 ∙ 𝑡
Momentan Geschwindigkeit: 𝑣= lim = 𝑠̇ 1 2
∆𝑡→0 ∆𝑡 2
𝑔𝑡 −ℎ0
𝑠𝑔𝑒𝑠
Abwurfgeschwindigkeit: 𝑣0 =
𝑡
Durchschnitts Geschwindigkeit: 𝑣=𝑡
𝑔𝑒𝑠 Beschleunigung: 𝑎(𝑡) = −𝑔 𝑎(𝑡) = 𝑔
________________________________________________________________ 1 1
Position: 𝑦(𝑡) = 𝑦0 + 𝑣0 ∙ 𝑡 − 𝑔 ∙ 𝑡² 𝑦(𝑡) = 𝑦0 − 𝑣0 ∙ 𝑡 − 𝑔 ∙ 𝑡²
1.2 Kenngröße Beschleunigung: 2 2
1
𝑦(𝑡) = 𝑣0 ∙ 𝑡 − 𝑔 ∙ 𝑡²
𝑣 𝑚 2
Konst. Beschl. Bewegung: 𝑎= 𝑡
(𝑠2 ); ∆𝑣 & ∆𝑡 sind gleich Steigzeit: 𝑡𝑠 =
𝑣0
𝑔
∆𝑣 (𝑣0 )²
Mittlere Beschl.: 𝑎= ∆𝑡
; ∆𝑣 & ∆𝑡 sind nicht gleich Max. Wurfhöhe: ℎ(𝑡𝑠 ) = ℎ0 +
2∙𝑔
𝑣(𝑡−∆𝑡)−𝑣(𝑡) 𝑑𝑣 𝑣0 ±√(𝑣0 )2 +2∙𝑔∙𝑦0
Momentan Beschl.: 𝑎= lim ∆𝑡
= 𝑑𝑡
= 𝑣̇ ; v ableiten Wurfdauer: 𝑡𝑤 = 2 ∙ 𝑡𝑠 𝑡𝑤 = 𝑡1/2 =
−𝑔
∆𝑡→0
−𝑣0 ±√(𝑣0 )2 +2∙𝑔∙𝑦0
Mit Anfangshöhe 𝑡𝑤 = 𝑡1/2 = −𝑔
1.3 Gleichmäßig beschleunigte Bewegung:
________________________________________________________________
∆𝑣 𝑣−𝑣0
Beschleunigung: 𝑎(𝑡) = = = 𝑘𝑜𝑛𝑠𝑡. 2.2 Waagrechter Wurf:
∆𝑡 𝑡
Erreichte Geschwindigkeit: 𝑣(𝑡) = 𝑣0 + 𝑎 ∙ ∆𝑡 Geschwindigkeit: 𝑣𝑥 (𝑡) = 𝑣0 𝑣𝑦 (𝑡) = −𝑔 ∙ 𝑡 𝑣(𝑡) = √(𝑣𝑥 ) + (𝑣𝑦 )²
𝑣(𝑡) = √𝑣02 ± 2 ∙ 𝑎 ∙ (𝑠 − 𝑠0 ) Beschleunigung: 𝑎𝑥 (𝑡) = 0 𝑎𝑦 (𝑡) = −𝑔 𝑎(𝑡) = −𝑔
1
𝑣+𝑣0 Position: 𝑥(𝑡) = 𝑣𝑥 (𝑡) ∙ 𝑡 = 𝑣0 ∙ 𝑡 𝑦(𝑡) = ℎ0 − 𝑔𝑡²
2
Mittlere Geschwindigkeit: 𝑣𝑚 = 2 Wurfweite: 𝑥𝑚𝑎𝑥 = 𝑣0 ∙ 𝑡𝑤
1 𝑣+𝑣0 1
Zurückgelegter Weg: 𝑠 = 𝑠0 + 𝑣𝑚 ∙ 𝑡 = 𝑣 ∙ 𝑡 = 𝑠0 + ∙ 𝑡 = 𝑠0 + 𝑣0 ∙ 𝑡 + 𝑎 ∙ ∆𝑡² Wurfzeit: y(t)=0 → 𝑡𝑤 = √
2∙ℎ0
2 2 2 𝑔
𝑠 2𝑠 𝑣 𝑣 2 2(𝑠−𝑠0 ) Max. Wurfhöhe: 𝑦𝑚𝑎𝑥 = ℎ0
Beschleunigungszeit: 𝑡=𝑣 = 𝑣
= − 𝑎0 ± √(𝑎0 ) + 𝑎0 9 x(t) nach t umformen und in y(t)
𝑚 0 0 Bahngleichung: 𝑦(𝑥) = − ∙ 𝑥 2 + ℎ0
𝑔 2∙𝑣02 einsetzen
Gleichung f. Bew.-Bahn: 𝑦(𝑥) = tan 𝛼 ∙ 𝑥 −
2∙𝑣0 ²∙𝑐𝑜𝑠²𝛼
∙ 𝑥² (ausm Ursprung)
|𝑣𝑦 (𝑡𝑤 )| |−𝑔∙𝑡𝑤 | √2𝑔ℎ0
Aufprallwinkel: tan 𝛼 = |𝑣𝑥 (𝑡𝑤 )|
= |𝑣0 |
=
𝑣0
, ________________________________________________________________
2.3 Schräger Wurf: 3.2 beschleunigte Drehbewegung
Anfangsgeschwindigkeit: 1 1
𝑣𝑥 (𝑡0 ) = 𝑣0 ∙ cos 𝛼 𝑣𝑦 (𝑡0 ) = 𝑣0 ∙ sin 𝛼 Drehwinkel: 𝜑 = 𝜔𝐴 ⋅ 𝑡 + 2 ⋅ 𝛼 ⋅ 𝑡 2 = 𝜔𝐴 ⋅ 𝑡 + 2 (𝜔𝜖 − 𝜔𝐴 ) ⋅ 𝑡
Geschwindigkeit: 𝑣𝑥 (𝑡) = 𝑣0 ∙ cos 𝛼 = 𝑘𝑜𝑛𝑠𝑡. 𝜔𝐴 +𝜔𝜖
𝜑=( 2
)⋅𝑡
𝑣𝑦 (𝑡) = 𝑣0 ∙ sin 𝛼 − 𝑔𝑡 360°
Umwandlung: 𝜑 (𝑖𝑛 𝑟𝑎𝑑) =
Beschleunigungen: 𝑎𝑥 (𝑡) = 0 𝑎𝑦 (𝑡) = −𝑔 2𝜋
1 Winkelgeschwindigkeit: 𝜔𝜖 = 𝜔(𝑡) = 𝜔𝐴 + 𝛼 ⋅ 𝑡 → 𝜑̇
Position: 𝑥(𝑡) = 𝑣0 ∙ cos 𝛼 ∙ 𝑡 𝑦(𝑡) = 𝑠0 + 𝑣0 ∙ sin 𝛼 ∙ 𝑡 − 𝑔𝑡²
2
𝛥𝜔 𝜔𝜖 −𝜔𝐴
Winkelbeschleunigung: 𝛼= 𝛥𝑡
= 𝑡
→ 𝜑̈
𝑣² (𝑟∙𝜔)²
Normalbeschleunigung: 𝑎𝑛 = = = 𝑟 ∙ 𝜔²
−𝑣0 ∙𝑠𝑖𝑛𝛼±√(𝑣0 ∙𝑠𝑖𝑛𝛼)2 +2∙𝑔∙𝑦0 𝑟 𝑟
Wurfzeit: 𝑡𝑤 = 𝑡𝑠 + 𝑡𝐹 mit 𝑡𝑤 =
−𝑔
mit Anf.höhe Tangentialbeschleunigung: 𝑎𝑡 = 𝑟 ⋅ 𝛼
𝑣0 ∙𝑠𝑖𝑛𝛼
mit 𝑡𝑠 = Bahnbeschleunigung: 𝑎⃗ = ⃗⃗⃗⃗
𝑎𝑡 + ⃗⃗⃗⃗⃗
𝑎𝑛 nicht beschleunigt, dann nur 𝑎𝑡 = 0
𝑔
2∙𝑣0 ∙𝑠𝑖𝑛𝛼
Ohne Anf.höhe
𝑡𝐹 = 𝑡𝑠 → 𝑡𝑤 =
𝑔
𝑛 = 𝑘𝑜𝑛𝑠𝑡, 𝑣 = 𝑘𝑜𝑛𝑠𝑡
(𝑣0 )²∙(𝑠𝑖𝑛𝛼)²
Wurfhöhe: 𝑦(𝑡𝑠 ) = 𝑦0 +
2∙𝑔
−𝑣0 ∙𝑠𝑖𝑛𝛼±√(𝑣0 ∙𝑠𝑖𝑛𝛼)2 +2∙𝑔∙𝑦0
Wurfweite: 𝑥(𝑡𝑤 ) = 𝑣0 ∙ 𝑐𝑜𝑠𝛼 ∙
−𝑔
mit Anf.höhe
2∙𝑣0 ∙𝑠𝑖𝑛𝛼 𝑣0 ²∙𝑠𝑖𝑛2𝛼
𝑥(𝑡𝑤 ) = 𝑣0 ∙ 𝑐𝑜𝑠𝛼 ∙ = Ohne Anf.höhe
𝑔 𝑔
Bahngleichung: 𝑦(𝑥) = 𝑦0 + tan 𝛼 ∙ 𝑥 −
𝑔
∙ 𝑥², mit 𝑦0 als Anfangshöhe
4. Polarkoordinaten:
2∙𝑣0 ²∙𝑐𝑜𝑠²𝛼
________________________________________________________________
cos 𝜑(𝑡) −sin 𝜑(𝑡) −sin 𝜑(𝑡) −cos 𝜑(𝑡)
𝑒𝑟 = ( sin 𝜑(𝑡) )
⃗⃗⃗⃗ 𝑒𝜑 = ( cos 𝜑(𝑡) )
⃗⃗⃗⃗⃗ 𝑒⃗⃗⃗⃗𝑟̇ = 𝜑̇ ( cos 𝜑(𝑡) ) ̇
𝑒⃗⃗⃗⃗⃗
𝜑 = 𝜑̇ ( −sin 𝜑(𝑡) )
3. Kreisbewegungen:
Umfang Kreis: 𝑈 =𝑑∙𝜋 𝑒⃗⃗⃗⃗𝑟̈ = 𝜑̈ ∙ ⃗⃗⃗⃗⃗
𝑒𝜑 − 𝜑̇ 2 ∙ ⃗⃗⃗⃗
𝑒𝑟
Fläche: 𝐴 = 𝜋𝑟 2 Geschwindigkeit: 𝑣⃗(𝑡) = 𝑟⃗̇ = 𝑟̇ ⋅ ⃗⃗⃗⃗ 𝑒𝜑 ➔
𝑒𝑟 + 𝑟 ⋅ 𝜑̇ ∙ ⃗⃗⃗⃗⃗ 𝑣⃗(𝑡) = ⃗⃗⃗⃗
𝑣𝑟 + ⃗⃗⃗⃗⃗
𝑣𝜑
𝜋∗𝑟𝑎𝑑 180
Umrechnung Grad in Rad: 1° = 180
; 1 𝑟𝑎𝑑 = 𝜋
≈ 57,3° Beschleunigung: 𝑎⃗(𝑡) = 𝑟⃗̈ = (𝑟̈ − 𝑟𝜑̇ ) ⋅ ⃗⃗⃗⃗
2
𝑒𝑟 + (𝑟 ⋅ 𝜑̈ + 2𝑟̇ 𝜑̇) ⋅ ⃗⃗⃗⃗⃗
𝑒𝜑
2
3.1 Gleichförmige Drehbewegung: 𝑎𝑟 = 𝑟̈ − 𝑟𝜑̇
𝑎⃗ = ⃗⃗⃗⃗⃗
𝑎𝑟 + ⃗⃗⃗⃗⃗⃗,
𝑎𝜑 für r konst.
𝑎𝜑 = 𝑟 ⋅ 𝜑̈ + 2𝑟̇ 𝜑̇
𝑘 1
Drehfrequenz: 𝑛= 𝑡
(𝑚𝑖𝑛); mit k als Anzahl der Umläufe
𝜑 Sonderfall: 𝑎⃗ = −𝑟𝜑̇ 2 ⋅ ⃗⃗⃗⃗
𝑒𝑟 + 𝑟 ⋅ 𝜑̈ ⋅ ⃗⃗⃗⃗⃗
𝑒𝜑 𝑓ü𝑟 𝑟 = 𝑘𝑜𝑛𝑠𝑡.
Anzahl der Umläufe: 𝑘= 2𝜋
𝑟∙𝜑 𝑚 𝝋 = 𝝋(𝒕)!!!!!
Geschwindigkeit: 𝑣 =𝑑∙𝜋∙𝑛 = = 𝜔 ∙𝑟( )
𝑡 𝑠
Strecke für k-Umläufe: 𝑠 =𝑑∙𝜋∙𝑘
Ort der Bahnkurve mittels Drehwinkel 𝜑: 𝑠 = 𝑟 ∗ 𝜑
𝜑 2𝜋
Winkelbeschleunigung: 𝜔= 𝑡
= 2𝜋𝑛 = 𝑇 (𝑃𝑒𝑟.𝐷𝑎𝑢𝑒𝑟)