100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Samenvatting Wiskundige methoden en technieken Stappenplan - semester 1

Bewertung
4,6
(7)
Verkauft
43
seiten
18
Hochgeladen auf
04-07-2022
geschrieben in
2021/2022

Aangezien wiskunde een zeer moeilijk vak was om te studeren, had ik nood aan een extra overzicht van de theorie. In het bestand vind je de te kennen theorie terug maar dan met stappenplannen en voorbeelden om de leerstof beter te begrijpen en toe te kunnen passen! Als student die 2 uur wiskunde per week heeft gekregen in het middelbaar heb ik toch dankzij dit overzicht een 14 op 20 gehaald! Docent: Ida Ruts

Mehr anzeigen Weniger lesen
Hochschule
Kurs










Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Hochgeladen auf
4. juli 2022
Anzahl der Seiten
18
geschrieben in
2021/2022
Typ
Zusammenfassung

Themen

Inhaltsvorschau

!!! Kijk in boek/ HC/WK voor andere relevante theorie en grafieken en oefeningen!!!


REËLE FUNCTIES VAN EEN VERANDERLIJKE (H1)
Kernbegrippen i.v.m functie’s
DEF Expliciet/ impliciet

Men spreekt v/e expliciete voorstelling van de Men spreekt v/e impliciete voorstelling van de
functie f : ℝ->ℝ, wnr voorschrift geëxpliceerd functie f : ℝ->ℝ, wanneer het voorschrift
is naar de afhank. veranderlijke, m.a.w. y = f(x) impliciet bepaald wordt uit een verband F(x,y) = 0

DEF Symmetrieën

Een reële functie f : ℝ->ℝ : x->f(x) is een even Een reële functie f : ℝ->ℝ : x->f(x) is een oneven
functie, indien voor elke waarde x uit het functie, indien voor elke waarde x uit het domein
domein geldt: f(−x) = f(x) geldt: f(−x) = −f(x)

-> grafisch: symmetrisch t.o.v de y-as -> grafisch: symmetrisch t.o.v de oorsprong

Stappenplan:
1) Test: vervang alle x-waarden door -x
2) Gaan alle “-“ worden weggewerkt?
-ja: even functie (opl is f(−x) = f(x))
-nee: oneven functie (opl is f(−x) = -f(x))

DEF Inverse functie
Stappenplan:
Een functie f-1 : ℝ->ℝ : x-> f-1(x) is de inverse 1) Herschrijf het voorschrift y=f(x) tot een vorm
functie van f : ℝ->ℝ : x->f(x), indien voor elke x= een functie van y
waarde x uit het domein van f geldt: 2) Controleer of het domein beperkt moet
f(x) = y <=> f-1(y) = x worden
2.1) indien nodig, voorschrift opnieuw
Merk op oef: domein en bereik omwisselen herschrijven zodat het beperkt wordt
-> grafisch: gespiegeld t.o.v de 1ste bissectrice 3) Wissel x en y om

DEF Samenstellen van functies
Stappenplan:
Een reële functie h : ℝ->ℝ : x->h(x) is een 1) Neem functie voorschrift v/d 1ste komende (f)
samenstelling van functies g : ℝ->ℝ : x->g(x) als argument bij de 2de (g)
“na” f : ℝ->ℝ : x->f(x), of H = g o f 2) Neem de functie v/d 2de en pas argument toe

Limietwaarde -> kijk werkcollege 3! En schema achteraan!
DEF Limiet

Een functie f : ℝ->ℝ : x->f(x) bereikt in het lim f ( x )=L -> “de limiet van f voor x gaande naar a”
x→ a
punt x = a de limietwaarde L, of
lim f ( x )=L
x→ a Limiet is “naderen tot een bepaald punt en zien
Als de functiewaarden f(x) willekeurig dichter wat het beeld doet” -> bestaat alleen als linker-
bij L komen als punten x dichter naar a gaat. en rechterlimiet hetzelfde zijn!

Linkerlimiet: Als f(x) willekeurig dichter bij L komen als punten x kleiner dan a dichter naar a gaat
Rechterlimiet: Als f(x) willekeurig dichter bij L komen als punten x groter dan a dichter naar a gaat
Limieten oneigenlijke: Als f(x) oneindig stijgt of daalt als x dichter naar a gaat (oplos. is: L=+∞/+∞)


Theorie + stappenplan + voorbeelden 1

, !!! Kijk in boek/ HC/WK voor andere relevante theorie en grafieken en oefeningen!!!


HA = limiet naar oneindig -> getal oplevert / VA = limiet naar getal -> oneindig oplevert
Rekenen met oneindigheden
Bepaalde vormen: Onbepaalde vormen:
+∞ ± C = +∞ -∞ ± C = -∞
+∞ . a = +∞ als a>0 -∞ . a = -∞ als a>0 0 ∞
+∞ . a = -∞ als a<0 -∞ . a = +∞ als 0
&

, +∞ - ∞, 0. ∞
a<0
+∞.+∞ = +∞ | -∞.-∞ = +∞ | +∞.-∞ = -


Continuïteit
DEF Continuïteit in een punt

Een functie f : ℝ->ℝ : x->f(x) is continu in een Indien de functiewaarde of de limietwaarde niet
punt x = a als lim f ( x )=f (a). bestaan, of indien ze verschillend zijn, noemt
x→ a men de functie discontinu in het betreffend punt.

-> indien discontinu is de 2de vraag op exame:
is de functie continu op het domein? (HC)

Belangerijke functies
DEF Veeltermfuncties

Veeltermfunctie van graad n heeft voorschrift Een veeltermfunctie heeft als domein de gehele
f : ℝ->ℝ : x->f(x) = anxn + an-1 xn-1 +…+a1x +a0 reële as en is continu ->notatie: domein ℝ

met n ∈ ℕ en met a0 , a1 ,…, an-1, an ∈ℝ en an≠0

DEF Lineaire functie (een veeltermfunctie van graad 1)
Lineaire functie heeft voorschrift f : De waarde m is de richtingcoëfficiënt of helling
ℝ->ℝ : x->f(x) = mx + q. van de functie, de waarde q bepaalt het snijpunt
Grafisch: een rechte van de beeldlijn van de functie met de y-as.

DEF Kwadratische functie = parabool (een veeltermfunctie van graad 2)
Elke vergelijking van de vorm y =ax2 + bx + c De top v/d parabool heeft coördinaten (x 0, y0)
(met a ∈ ℝ0 , b ∈ ℝ , c ∈ ℝ ) is een parabool. −b
met x0 = ; y0 is dan de functiewaarde van x0.
2. a
Grafisch: de symmetrie-as is evenwijdig aan
de y-as en heeft vergelijking x = x0. De parabool heeft de holle zijde naar boven
indien a > 0, naar beneden indien a < 0

DEF Rationale functies (2 veeltermfuncties in breuk)

Een rationale functie heeft voorschrift f : Het domein van een rationele functie is de ℝ
ℝ->ℝ : x->f(x)= verminderd met de waarde waarvoor de noemer
n n−1
an x + an−1 x +…+ a1 x +a 0 nul wordt. Een rationale functie is continu op
m m−1 haar domein. -> notatie: domein ℝ¿ {…¿}
bm x + bm−1 x + …+b1 x+b 0

met n ∈ ℕ en met a0,a1…,an,b0,b1…bm ∈ ℝ




Theorie + stappenplan + voorbeelden 2

, !!! Kijk in boek/ HC/WK voor andere relevante theorie en grafieken en oefeningen!!!


DEF Irrationale functies (veeltermfunctie onder een wortel)

Een irrationale functie heeft een voorschrift Het domein v/e irrationale functie is beperkt tot
waarin 1 of meer wortelvormen voorkomen. dat deel v/d reële as waarvoor het argument
onder de wortel het juiste teken bezit (≥0).
-> notatie: domein f = ¿−∞ , …¿ ¿ ∪ ¿
DEF De cirkel
De impliciete vergelijking beschrijft een cirkel Het middelpunt van deze cirkel heeft coördinaten
(x-x0)2 + (y-y0)2 = r2 (x0, y0) (-> let op: intrepretatie + en – in formule)
En de straal is r dus √ r 2
+¿ ¿
met x0 en y0 ∈ ℝ en r2 ∈ R0 En domein is altijd = [( x0 −r ),( x0 +r )]

DEF Expontentiële functies (machten)

Exponentiële functie heeft voorschrift: expa is een strikt stijgende functie indien a>1 en
+¿ ¿
expa: ℝ-> R0 : x-> expa = ax een strikt dalende functie indien a<1

met a ∈ ℝ+\{ 0,1 } Als a<1: functie met x-as als HA aan rechterkant
+¿ ¿
(ℝ-> R0 dus oplossing altijd positief) en als a>1: functie met x-as als HA aan linkerkant

Specifiek: natuurlijke expontentiële functie -> heeft grondtal het getal van Euler: e=2,7
Wnr a = getal van Euler dan notatie exp(x) = ex -> verloopt stijgend bcs e>1
-> p. 24 het verloop van de exponentiele functies: e x , e-x, -ex , -e-x moet je kennen!

DEF Logaritmische functies

+¿ ¿
De logaritmische functie loga is de inverse van Bereik R0 ->nooit logaritme van neg getal
de exponentiële functie expa. het voorschrift: neme!
+¿ ¿
loga: R0 ->ℝ : x-> loga (x) en w. gedifinieerd
als: Eigenschappen ook voor specifieke gevalle:
loga (x) = y <=> x = ay
loga is een strikt stijgende functie indien a>1 en
met a ∈ ℝ+\{ 0,1 } een strikt dalende functie indien a<1

bv: log2 16 = 4 want 2?=16

Specifiek: briggse logaritmische functie -> heeft grondtal 10
Notatie briggse logaritmische functie: log (x) = log10 (x)

Specifiek: natuurlijke logaritmische functie -> heeft grondtal het getal van Euler: e=2,7
Wnr a = getal van Euler dan notatie ln(x) = loge (x) en wordt gedefinieerd als y = ln (x) <=> x = ey
-> p. 27 het verloop van de natuurlijke logaritmische functie moet je kennen!

Rekenregels logaritmen

Loga (x.y) = Loga (x) + Loga (y) ln (x.y) = ln (x) + ln (y)

Loga (x/y) = Loga (x) - Loga (y) ln (x/y) = ln (x) – ln (y)

Loga (xy) = y. Loga (x) ln (xy) = y. ln (x)



Theorie + stappenplan + voorbeelden 3
7,49 €
Vollständigen Zugriff auf das Dokument erhalten:
Von 43 Studierenden gekauft

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Bewertungen von verifizierten Käufern

Alle 7 Bewertungen werden angezeigt
2 Wochen vor

2 Jahr vor

2 Jahr vor

1 Jahr vor

2 Jahr vor

Normally I don't post reviews but this file made me pass the exam really well!

2 Jahr vor

The roadmaps suddenly made all the difficult subject matter a lot clearer! It helped me a lot, so I succeeded myself! Thanks!

3 Jahr vor

A very comprehensive summary of the theory and exercises! The self-made step-by-step plans help to solve the solution in a structured way! The step-by-step plans and examples suddenly make everything much easier!

4,6

7 rezensionen

5
5
4
1
3
1
2
0
1
0
Zuverlässige Bewertungen auf Stuvia

Alle Bewertungen werden von echten Stuvia-Benutzern nach verifizierten Käufen abgegeben.

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
studentmodeltraject Universiteit Antwerpen
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
664
Mitglied seit
5 Jahren
Anzahl der Follower
285
Dokumente
46
Zuletzt verkauft
3 Jahren vor
Samenvattingen van supply chain management (kdg), TEW- toegepaste economische wetenschappen (Ua, Universiteit Antwerpen) of schakelprogramma (maritiem en logistiek management/ organisatie en management)

1. Ik verkoop samenvattingen die ik persoonlijk zelf heb gemaakt. De samenvattingen zijn steeds compleet! Ik heb ze namelijk zelf altijd gebruikt en tot nu toe alle examens gehaald. 2. Over mijn schooltraject: ik ben begonnen op Kdg met supply chain Management, hierna gestart aan het schakelprogramma van de Ua waarin ik de belangrijkste vakken van de richting TEW en SEW kreeg. 3. Momenteel ben ik bezig met mijn master organisatie en management. 4. In mijn samenvattingen gebruik ik kleur waardoor het leren makkelijker en sneller verloopt!

Mehr lesen Weniger lesen
4,8

196 rezensionen

5
167
4
19
3
8
2
2
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen