TU Dresden · Fakultät Mathematik · Institut für Numerische Mathematik 1
Prof. Dr. A. Schwartz Institut für Numerische Mathematik
Dr. M. Herrich SS 2022
Übungen zur Vorlesung Spezielle Kapitel der Mathematik
11. Übung, 20.06.–24.06.2022
Aufgabe 5 (Weibull-Verteilung zur Beschreibung der Lebensdauer eines Elektrogerätes)
Es sei T die Lebensdauer eines elektronischen Bauelements (das heißt, die Zeit bis zum Ausfall des
Bauelements) in Monaten.
(a) Angenommen, T ist exponentialverteilt und besitzt die Verteilungsfunktion
(
1 − e−b für b ≥ 0,
F1 (b) =
0 für b < 0.
(a1) Berechnen Sie die Wahrscheinlichkeit dafür, dass das Bauelement bis einschließlich des
4. Monats funktionstüchtig ist, das heißt, seine Lebensdauer mindestens 4 Monate beträgt.
(a2) Berechnen Sie die Wahrscheinlichkeit dafür, dass das Bauelement bis einschließlich des
4. Monats funktionstüchtig ist, wenn dies bis einschließlich des 3. Monats der Fall war.
(a3) Berechnen Sie nun allgemeiner die Wahrscheinlichkeit dafür, dass das Bauelement bis
einschließlich des n-ten Monats funktionstüchtig ist (n = 1, 2, 3, . . .), wenn dies bis ein-
schließlich des (n − 1)-ten Monats der Fall war. Zeigen Sie insbesondere, dass diese Wahr-
scheinlichkeit unabhängig von n ist.
(b) In dieser Teilaufgabe wird nun angenommen, dass T Weibull-verteilt ist und die Verteilungs-
funktion ( 1 2
1 − e−( 2 b) für b ≥ 0,
F2 (b) =
0 für b < 0.
besitzt. Berechnen Sie auch für diesen Fall die Wahrscheinlichkeiten aus Teilaufgabe (a) und
zeigen Sie insbesondere, dass die Wahrscheinlichkeit aus (a3) für n → ∞ gegen Null geht
(insbesondere also von n abhängt). Deuten Sie dieses Ergebnis.
Bemerkung: Eine Zufallsgröße T mit der von zwei Parametern λ > 0 und k > 0 abhängigen Vertei-
lungsfunktion ( k
1 − e−(λb) für b ≥ 0,
FT (b) =
0 für b < 0
heißt Weibull-verteilt. In Teilaufgabe (b) ist T somit Weibull-verteilt mit den Parametern λ = 21
und k = 2. Die Exponentialverteilung ist eine spezielle Weibull-Verteilung, nämlich für k = 1.
Die Weibull-Verteilung wird häufig verwendet, um die Lebensdauer von elektronischen Bauelemen-
ten oder Werkstoffen zu beschreiben.
Lösung: Zunächst eine kurze Vorüberlegung zur Berechnung von Wahrscheinlichkeiten. Es gibt
bekanntlich einen Zusammenhang zwischen Funktionswerten der Verteilungsfunktion FT und Wahr-
scheinlichkeiten von Ereignissen im Zusammenhang mit der Zufallsgröße T . Dieser ist in dieser
Aufgabe gegeben durch
P (T ≤ b) = P (T < b) = FT (b),
wobei für erstere Gleichheit zu beachten ist, dass T eine stetige Zufallsgröße ist (unabhängig davon,
ob man davon ausgeht, dass T exponentialverteilt ist oder ob man die Weibull-Verteilung aus Tei-
laufgabe (b) zugrunde legt).
Nun zur Lösung der Teilaufgaben.
Prof. Dr. A. Schwartz Institut für Numerische Mathematik
Dr. M. Herrich SS 2022
Übungen zur Vorlesung Spezielle Kapitel der Mathematik
11. Übung, 20.06.–24.06.2022
Aufgabe 5 (Weibull-Verteilung zur Beschreibung der Lebensdauer eines Elektrogerätes)
Es sei T die Lebensdauer eines elektronischen Bauelements (das heißt, die Zeit bis zum Ausfall des
Bauelements) in Monaten.
(a) Angenommen, T ist exponentialverteilt und besitzt die Verteilungsfunktion
(
1 − e−b für b ≥ 0,
F1 (b) =
0 für b < 0.
(a1) Berechnen Sie die Wahrscheinlichkeit dafür, dass das Bauelement bis einschließlich des
4. Monats funktionstüchtig ist, das heißt, seine Lebensdauer mindestens 4 Monate beträgt.
(a2) Berechnen Sie die Wahrscheinlichkeit dafür, dass das Bauelement bis einschließlich des
4. Monats funktionstüchtig ist, wenn dies bis einschließlich des 3. Monats der Fall war.
(a3) Berechnen Sie nun allgemeiner die Wahrscheinlichkeit dafür, dass das Bauelement bis
einschließlich des n-ten Monats funktionstüchtig ist (n = 1, 2, 3, . . .), wenn dies bis ein-
schließlich des (n − 1)-ten Monats der Fall war. Zeigen Sie insbesondere, dass diese Wahr-
scheinlichkeit unabhängig von n ist.
(b) In dieser Teilaufgabe wird nun angenommen, dass T Weibull-verteilt ist und die Verteilungs-
funktion ( 1 2
1 − e−( 2 b) für b ≥ 0,
F2 (b) =
0 für b < 0.
besitzt. Berechnen Sie auch für diesen Fall die Wahrscheinlichkeiten aus Teilaufgabe (a) und
zeigen Sie insbesondere, dass die Wahrscheinlichkeit aus (a3) für n → ∞ gegen Null geht
(insbesondere also von n abhängt). Deuten Sie dieses Ergebnis.
Bemerkung: Eine Zufallsgröße T mit der von zwei Parametern λ > 0 und k > 0 abhängigen Vertei-
lungsfunktion ( k
1 − e−(λb) für b ≥ 0,
FT (b) =
0 für b < 0
heißt Weibull-verteilt. In Teilaufgabe (b) ist T somit Weibull-verteilt mit den Parametern λ = 21
und k = 2. Die Exponentialverteilung ist eine spezielle Weibull-Verteilung, nämlich für k = 1.
Die Weibull-Verteilung wird häufig verwendet, um die Lebensdauer von elektronischen Bauelemen-
ten oder Werkstoffen zu beschreiben.
Lösung: Zunächst eine kurze Vorüberlegung zur Berechnung von Wahrscheinlichkeiten. Es gibt
bekanntlich einen Zusammenhang zwischen Funktionswerten der Verteilungsfunktion FT und Wahr-
scheinlichkeiten von Ereignissen im Zusammenhang mit der Zufallsgröße T . Dieser ist in dieser
Aufgabe gegeben durch
P (T ≤ b) = P (T < b) = FT (b),
wobei für erstere Gleichheit zu beachten ist, dass T eine stetige Zufallsgröße ist (unabhängig davon,
ob man davon ausgeht, dass T exponentialverteilt ist oder ob man die Weibull-Verteilung aus Tei-
laufgabe (b) zugrunde legt).
Nun zur Lösung der Teilaufgaben.