100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Andere

Karteikarten zum Lernen von linearer Algebra für das erste Semester

Bewertung
-
Verkauft
-
seiten
50
Hochgeladen auf
25-05-2022
geschrieben in
2020/2021

Das Karteikartenset enthält 99 Fragen und Antworten zur linearen Algebra im praktischen PDF Dateiformat.












Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Dokument Information

Hochgeladen auf
25. mai 2022
Datei zuletzt aktualisiert am
25. mai 2022
Anzahl der Seiten
50
geschrieben in
2020/2021
Typ
Andere
Person
Unbekannt

Themen

Inhaltsvorschau

Lineare Algebra #1 Gruppen Lineare Algebra #2 Gruppen




Was versteht man unter einer Gruppe? Wann Was versteht man unter der Ordnung einer
heißt eine Gruppe abelsch? endlichen Gruppe G?




© 2022 © 2022
Lineare Algebra #3 Gruppen Lineare Algebra #4 Gruppen




Was versteht man unter Permutationen? Wie wird die Gruppe der Permutationen von n
Elementen bezeichnet?




© 2022 © 2022

,#2 Antwort #1 Antwort

Die Ordnung von G ist die Kardinalität der Menge G und wird mit Eine Gruppe ist eine nichtleere Menge G mit einer Verknüpfung ◦, die
|G| bezeichnet. Ist |G| endlich, so ist die Ordnung von G die Anzahl der zwei Elementen aus G ein Element aus G zuordnet: ◦ : G × G → G mit
Elemente in G. Im anderen Fall ist die Ordnung von G unendlich. folgenden Eigenschaften:

1. ∀ a, b, c ∈ G : (a ◦ b) ◦ c = a ◦ (b ◦ c) (Assoziativität)

2. ∃ e ∈ G : ∀ a ∈ G : e ◦ a = a (Existenz eines links-neutralen
Elementes

3. ∀ a ∈ G : ∃ b ∈ G : b ◦ a = e (Existenz eines links-inversen Elemen-
tes)

Das inverse Element zu a wird mit a−1 bezeichnet.

Eine Gruppe mit a ◦ b = b ◦ a für alle a, b heißt kommutativ bzw. Abelsche
Gruppe.




#4 Antwort #3 Antwort

Die Gruppe der Permutationen von n Elementen wird mit Sn bezeichnet Die bijektiven Abbildungen einer endlichen Menge auf sich selbst nennt
(exakt (Sn , ◦)). man Permutationen.

,Lineare Algebra #5 Gruppen Lineare Algebra #6 Gruppen




Wie ist die Untergruppe U einer Gruppe G Welche Ordnung hat die Gruppe Sn?
definiert?




© 2022 © 2022
Lineare Algebra #7 Gruppen Lineare Algebra #8 Gruppen




Wie ist die alternierende Gruppe An Was sind Links- bzw. Rechtsnebenklassen
definiert? und was ist ein Normalteiler?




© 2022 © 2022

, #6 Antwort #5 Antwort

Eine Permutation einer n-elementigen Menge lässt sich auf n! ver- Sei (G, ◦) eine Gruppe und U eine nichtleere Teilmenge von G, so dass
schiedene Arten festlegen: Für das Bild des ersten Elements hat man n (U, ◦) auch eine Gruppe ist. Dann heißt U Untergruppe von G.
Möglichkeiten, für das zweite noch n − 1 Möglichkeiten usw. Schließlich
bleibt für das Bild des letzten Elements nur noch eine Möglichkeit übrig.
Die Gruppe Sn hat somit die Ordnung n!.




#8 Antwort #7 Antwort

Sei U eine Untergruppe von (G, ◦). Dann sind die Familien {x · U |x ∈ G} Die alternierende Gruppe An ist die Menge aller geraden Permutationen
und {U · x|x ∈ G} Partitionen von G. Diese nennt man Links- bzw. Rechts- von n Elementen. Das ist eine Untergruppe der symmetrischen Gruppe.
nebenklassen. Die Anzahl dieser Nebenklassen heißt Index [G : U ] der
Untergruppe. U heißt Normalteiler, wenn Links- und Rechtsnebenklassen
übereinstimmen.
5,99 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
Mathematiker

Lerne den Verkäufer kennen

Seller avatar
Mathematiker Universität Siegen
Profil betrachten
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
0
Mitglied seit
3 Jahren
Anzahl der Follower
0
Dokumente
3
Zuletzt verkauft
-

0,0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen