100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Samenvatting Statistiek (kansrekening en inferentiële statistiek) - hoofdstuk 6

Bewertung
-
Verkauft
-
seiten
17
Hochgeladen auf
22-05-2022
geschrieben in
2021/2022

Dit is een samenvatting van het vak 'Statistiek II' gegeven aan de Vrije Universiteit Brussel door Peter Theuns. Het vak heeft veel overlappingen met het vak 'Statistiek voor de gedragswetenschappen'. Dit is het vierde deel van de samenvatting en het behandelt hoofdstuk 6 (inleiding tot inferentie).

Mehr anzeigen Weniger lesen
Hochschule
Kurs










Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Verknüpftes buch

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Gesamtes Buch?
Nein
Welche Kapitel sind zusammengefasst?
Hoofdstuk 6
Hochgeladen auf
22. mai 2022
Datei zuletzt aktualisiert am
26. mai 2022
Anzahl der Seiten
17
geschrieben in
2021/2022
Typ
Zusammenfassung

Themen

Inhaltsvorschau

STATISTIEK
DEEL 4
KANSREKENING EN INFERENTIËLE STATISTIEK

HOOFDSTUK 6: INLEIDING TOT INFERENTIE
6.1. Betrouwbaar schatten
6.1.1. Inferentie
6.1.2. Statistische betrouwbaarheid
6.1.3. Puntschatting
6.1.4. Intervalschatting
6.1.5. Betrouwbaarheidsinterval (Confidence Level)
6.1.6. Grootte van de steekproef
6.1.7. Waarschuwing in verband met schatters
6.1.8. Boosttrapping
6.1.9. Samenvattend
6.2. Significantietoetsen
6.2.1. Redenering bij significantietoetsen
6.2.2. Hypothese stellen
6.2.3.Toetsingsgrootheden
6.2.4. Overschrijdingskansen (p-waarden)
6.2.5. Statistische significantie
6.2.6. Toetsen voor een populatiegemiddelde µ
6.2.7. Twee-zijdige significantietoetsen en betrouwbaarheidsintervallen
6.2.8. Significantietoets in 4 stappen
6.3. Gebruik en misbruik van toetsen
6.4. Onderscheidingsvermogen en inferentie als beslissing
6.4.1. Onderscheidingsvermogen (Power)
6.4.2. Onderscheidingsvermogen vergroten
6.5. Samenvattend

, 6.




Hoofdstuk 6: Inleiding tot inferentie
6.1. Betrouwbaar schatten
Het steekproefgemiddelde x is de natuurlijke schatter van de onbekende populatieverwachting µ. Wat
nog belangrijker is, de wet van de grote aantallen zegt dat het steekproefgemiddelde moet naderen tot
de populatieverwachting als de steekproefomvang toeneemt.

6.1.1. Inferentie
Het doel van statistische inferentie is het trekken van conclusies uit gegevens. Bij formele inferentie ligt
de nadruk op het onderbouwen van onze conclusies met kansberekeningen (gebaseerd op
steekproefverdelingen).

- Dankzij de kansrekening kunnen we rekening houden met toevallige variaties en op deze manier
onze beoordeling aan de hand van berekeningen corrigeren.
- Als je statistische inferentie gebruikt, handel je alsof de gegevens afkomstig zijn uit een aselecte
steekproef of een willekeurig experiment.

Er zijn een aantal voorwaarden voor inferenties over een gemiddelde. Statistische inferentie is
gebaseerd op een aantal hypothesen.

- We hebben een EAS van de bestudeerde populatie. Er is geen nonresponse of ander praktisch
probleem (fouten in de data).
- De bestudeerde variabele is exact Normaal verdeeld N(µ,σ) in de populatie.
- We kennen het populatiegemiddelde (de verwachting) µ niet, maar we kennen wel de
standaarddeviatie σ.

Bij inductieve technieken zijn er telkens twee doelen.

1. SCHATTEN (betrouwheidsintervallen)




2. TOETSEN (significantietietoetsen)




24

, 6.1.2. Statistische betrouwbaarheid
Bij statistisch schatten zijn er twee manieren om betrouwbaar te schatten. Dit kan aan de hand van een
puntschatting en aan de hand van een intervalschatting.




Voor een puntschatting schat je één waarde voor de parameter op basis van een statistiek. Zo is het
steekproefgemiddelde een puntschatting van het populatiegemiddelde.

Voor een intervalschatting schat je een bereik van waarden, waarbinnen je denkt dat de parameter ligt.

6.1.3. Puntschatting
Steekproefgrootheid

schatter = 1 waarde voor Populatieparameter

Maximum Likelihood methode
De Maximum Likelihood-methode is de grootste aannemelijkheidsmethode.




Eigenschappen van een goede schatter
o Zuiver: S is een zuivere schatter voor populatieparameter ϴ → E(S) = ϴ
o Efficiënt: S is een efficiënte schatter voor ϴ → σ(S) is zo klein mogelijk (de schatter met
de kleinste standaardfout is de efficiëntste)
o Consistent: S is een consistente schatter voor ϴ, indien naarmate n stijgt, de kans stijgt
dat S de echte waarde van ϴ beter benadert




25
4,49 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
dl99 Karel de Grote-Hogeschool
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
76
Mitglied seit
3 Jahren
Anzahl der Follower
41
Dokumente
12
Zuletzt verkauft
1 Jahren vor

4,8

4 rezensionen

5
3
4
1
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen