100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Notizen

Linear Algebra full course lecture notes

Bewertung
-
Verkauft
-
seiten
85
Hochgeladen auf
16-01-2022
geschrieben in
2021/2022

Summary and notes on the full course of Linear Algebra at university level. In depth annotations and descriptions covering the whole semester. Consisting of all 28 lectures. Includes: determinants matrices gauss elimination reduction formula cramers rule etc.

Mehr anzeigen Weniger lesen
Hochschule
Kurs












Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Hochgeladen auf
16. januar 2022
Anzahl der Seiten
85
geschrieben in
2021/2022
Typ
Notizen
Professor(en)
Victor goryunov
Enthält
Alle klassen

Themen

Inhaltsvorschau

LECTURE ONE
lecturer one


'


introduction to linear algebra
-



complex numbers



Quadratic equations
'
general formula →
ax + be + C =
0

( real
coefficients a. b. C ,
a # o )



by
'



at
x + sc + = 0




'



( %) ( Ea)
'

✗ + -
+
£ =o




( Ea)
'
e-
E)
+ 2


= -




a




'
B2-4AC
µ tea )
+ =




Za




B2-4AC
tea
x + =




Za




0C = -

b In B2-4AC

2A




assuming discriminant
B2-4AC is non
negative
-




complex numbers


'

=L = -1 introduces an
imaginary unit ,
and set


it = -
I i = A


complex numbers are written in the Cartesian form


and real
✗ +
iy where
2
sc
y are numbers and
i = -

I



oc =
Re 1-2)

1m It )
y
=




both are real numbers .




all real numbers a c- IR are uicluded in the set € of all

complex numbers saying a = a + io

, and real
iy
the number 2- × + where × are
y
=
,




can be represented as a point on the co -
ordinate plane .




atm
subtracting
2- = x +
iy
y
- -





- -




is also like the subtraction of
;
planar vectors .





so the

Z,
Zz
-




=/ x
,
+
iy ) ,
-

(x >
+
iy ) ,


Addition
ly yz )
= (x ,
-


a) + i
,
-




is like addition of planar
^
1M
vectors .




I oc
, y ) + ( x2 , y
) =
( x
,
+ ✗
z , y tyz )
, , , ,




Z2
1SC ,
+
iy ) ,
+ ( sci +
iyz )
=
(x ,
+ x2 ) t i
ly ,
+
yz )
^


2-
-22
-




,




geometrically we use i
£

parallelogram
,
the rule s

nlm Re

-9
Z
, +2-2
multiplication
-




try
-


2- , = 0C , , - l

'

s
starts with the bracket

>
"
expansion
2-2=34 tiyz
s


Re Z
,
Z
,
=
( ×
,
tiy ) ( ,
x
,
+
iyz )


= I
,x , t ×
, iy ,
t ✗
ziy ,
t
ity , Yz

( i ? 1) -




regroup .




the expressions in the brackets are =
4C , sci
-




y , y , ) + i /× ,
y ,
+
Kay ) ,


real numbers hence the result is a
,


complex number




main properties of the three operations

commlltativity -2 t
2-2 Zz 2- -2
2-2 2-2-2
=
-




t =
, I , ,




It
"


2)
"


associativity =L
(2-2+2-3) + 2- + Z
-


+ =

, , }




distribute vity -
Z
,
I Zz t 2- 3) = Z
, Zz t Z ,
Z}

, LECTURE TWO
lecture three



complex conjugations nim



2- = ✗ +
iy
let 2- = x +
iy . its complex conjugate y
- - - -
-
-
-•
,
defined I
is as
iy
=
x -




t

od
'
Re
the operation 2- → É is complex conjugation .
I


its !
geometrically ,
the reflection of the complex -




y
- - - - -
- - -




in real axis
I = x
-




iy
plane the




properties
a- É =
-2 →
the double conjugation is the identity transformation

* if É =
2- then Z is real .




* the product É -2 = (x -




iy ) ( xtiy ) = ✗
'
+
y
'
is
always real and

non
negative
-




.




Division
mm



±
how to define
22
while keeping all standard properties of the

division ?


In particular ,
we want to be able to write the result in the form
a + ib
,
a
,
b t IR which would confirm that the result is a complex
number .




2-
,
Z
,
✗ Éz -2
,
= ×
,
+
iy , Zz
=
SC2 +
iyz
-
=




-22 2-2 ✗ Éz


= 2-
,
✗ Éz

xi +
y;



?
'
É
2-2=1×2 iya ) / xztiyz ) ; liyz ) i' ? ?
y;
-

=
x =
oc =
x +
y
- -




,




is real and positive if 2-2 =/ 0




modulus and
argument

the
writing 2- =
set
iy is the Cartesian form of the complex number 2- .




The modulus ( or absolute value ) of a complex number



2- = × +
iy is 12-1 =


,

2
+
y
'

,* we denote the modulus also by r= 12-1 ( radius )
* this is the distance from the origin to the point 2- =

octiy
* remember É 2- =

2
+
yz = 12-12
*
Always remember that 12-1 is real and positive ( unless 2- =o )
a 1M



2- =
octiy
y →
-
- - - -




# I
=\
g 1


! >
a Re




the
argument arglz ) of a complex number 2- = ✗ +
iy is the

angle between the positive real semi -
axis and the direction
from the origin to the point Z .




the
argument 0 is defined up to an integer number of
rotations
full about the origin .




Any integer multiple of 21T
may
be added to 0 to produce another admissible value of the

/ argument multi valued )
argument . The is

The
argument is measured in radians .




A 1M




y
- - -
- - -





2- = ✗ +
iy notice the
arglz ) when 2- =o is not

I defined .




'
't
=\ ,

I in
general if oc =/ 0 then tano =¥
,



a) =
angle) I
,


×
The


However ,
a- tan
"
(1) is not
always true .




indeed the range of the function tan
"
is the interval ( I
-




,
E)
1¥ )
'
F- tan valid and 4th quadrants
-




therefore is for the 1st
only ,




that is , for so > 0 .




for the 2nd and 3rd quadrants ( the left half -




plane that is ✗ < 0 )
1¥ )
"
the simplest is to take D= tan + IT .

, LECTURE THREE
lecture three



The
projections of the position rector of the complex number E-
xtiy are :




✗ = r cos it
y=rsino

so we can write 2- = rcosotirsuno-lztlcosotisi.no)


this is called the
trigonometric form or polar form of a complex number .




^
'M




2-
=x+iy

I
r
y=rsino
,
'
✗ Re
=rcoso




The trigonometric form of a complex number is expressed in terms of its modulus

and
argument .




2- = 12-1 ( cos at isino )



The Cartesian form 2- =
✗ +
iy is better for addition or subtraction whereas


trigonometric ( or exponential) form is better for multiplication or division . .




further properties

* -2+7 = É + Ñ

* In = E I

* Z1J =
E1J
* I 2- I =
IE1
*
/ zf =

a- / ZW1 = I2-1IW /

a- I2-1WI =/ 2- I / IW1


complex numbers on the unit circle

The unit circle on the complex plane is the circle of radius 1 with its

centre at the origin .




Therefore numbers on it are those of modulus 1 : t = 12-1=1
so 2- = cosotis.no



Let us
multiply two numbers such Z and W with arguments 0 and ✗ .




ZW =/ Cos it + isino )( cos ✗ + isinx )

Costco > icososinxticosxsindtiisinos.int arglzw )
=

× + Thus

=
( Costco > x
-

Sino Sino ) tilcososinxtcosxs.int ) =
arglz) +
arg ( w
)
=
cos lots ) + i sin to + x )
9,43 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
caitlindykstra

Lerne den Verkäufer kennen

Seller avatar
caitlindykstra The University of Liverpool
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
2
Mitglied seit
4 Jahren
Anzahl der Follower
2
Dokumente
0
Zuletzt verkauft
3 Jahren vor

0,0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen