100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Samenvatting hs3 continue kansmodellen

Bewertung
-
Verkauft
-
seiten
7
Hochgeladen auf
24-12-2021
geschrieben in
2021/2022

een samenvatting van alle begrippen mbt continue kansmodellen, uit HS 3

Hochschule
Kurs









Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Verknüpftes buch

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Gesamtes Buch?
Nein
Welche Kapitel sind zusammengefasst?
Hs3 continue kansmodellen
Hochgeladen auf
24. dezember 2021
Anzahl der Seiten
7
geschrieben in
2021/2022
Typ
Zusammenfassung

Themen

Inhaltsvorschau

continue kansmodellen

continue uniforme 2 parameters, a en b, begin- en eindpunt van het interval waarbinnen
analoog aan de tegenhangen vh discrete geval de toevalsveranderlijke altijd ligt.

De dichtheid is:
fX(x) = 1/(b − a) als a ≤ x < b en fX(x) = 0 als x ∉[a, b[

E(X) = (a + b)/2
var(X) = (b − a)²/12

exponentiële de verdeling van de wachttijd T op de eerste aankomst in een Poisson-proces
bvb.: de tijd die een winkelier moet wachten op zijn eerste klant

cum. v. f. vinden we via de overlevingsfunctie: de kans dat de wachttijd groter is dan t,
met t ≥ 0, is de kans dat op ogenblik t nog geen (nul) aankomsten zijn geregistreerd
Het aantal aankomsten is Poisson verdeeld met parameter λt, dus:

−λt
1 − FT(t) = P(T > t) = e , voor t ≥ 0

Door afleiden vinden we, voor λ > 0
−λt
fT (t) = λe als t ≥ 0 en fT (t) = 0 als t < 0

E(T) = 1/ λ
var(T) = 1/ λ²

deze verdeling is geheugenloos bvb.: Als een wachttijd exponentieel verdeeld is, dan betekent dit dat alle wachttijd tot
op een bepaald ogenblik vergeefs is geweest: de verwachte resterende wachttijd tot
de eerste gebeurtenis is dezelfde als in het begin. Wiskundig drukt men dit uit als:

P(T > s + t|T > s) = P(T > t)

De stelling geldt ook omgekeerd: als T geheugenloos is, dan moet T exponentieel verdeeld zijn

, Erlang De wachttijd tot de rde aankomst in een Poisson-proces is Erlang verdeeld
(uitbreiding van het "wachttijden experiment") De tijd tussen de nde en n + rde aankomst is natuurlijk eveneens Erlang verdeeld

De dichtheidsfunctie is gelijk aan, voor parameter λ > 0 en r > 0 een geheel getal,

r−1 r −λt
fT (t) = t λ e / (r − 1)! , als t ≥ 0 en fT (t) = 0 als t < 0

een Erlang-verdeling is altijd rechtsscheef

Gamma uitbreiding van de Erlang-verdeling voor niet-gehele waarden van parameter r
(het gaat dus niet meer om bvb een wachttijd (dat is geheel))

x−1 -u
gammafunctie Γ(x) = 0 ʃ ∞ u e du.
(we moeten hier nooit zelf mee rekenen) omdat id dichtheidsfunctie vd Erlang-verd. een faculteit staat, moeten we eerst de
faculteitsfunctie uitbreiden naar niet-gehele get. Die uitbreiding is de gammafunctie

afgeleide vormen: Γ(x + 1) = xΓ(x) (recursieformule)
Γ(n + 1) = n! ∀n ∈ N

Gamma-verdeling met parameters r > 0 en λ > 0

r−1 r −λx
fX(x) = x λ e / Γ(r) , als x ≥ 0 en fX(x) = 0 als x < 0

E(X) = r λ
var(X) = r / λ²

Beta model voor kansvariabelen die enkel waarden kunnen aannemen op het interval [0, 1]
Indien Y waarden aanneemt op het interval [a,b], dan kunnen we X = (Y−a)/(b−a)
definiëren en X zal dan waarden aannemen tussen 0 en 1, en dus mogelijk
gemodelleerd kunnen worden als een Beta-verdeelde veranderlijke
2,99 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
julienvandecasteele

Ebenfalls erhältlich im paket-deal

Lerne den Verkäufer kennen

Seller avatar
julienvandecasteele Katholieke Universiteit Leuven
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
5
Mitglied seit
4 Jahren
Anzahl der Follower
4
Dokumente
19
Zuletzt verkauft
3 Jahren vor

0,0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen