100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Notizen

EC123 Mathematical Techniques B Complete Notes

Bewertung
3,0
(1)
Verkauft
5
seiten
27
Hochgeladen auf
22-10-2021
geschrieben in
2020/2021

This document contains all the notes from the synchronous and asynchronous lectures throughout the year and is split up lecture by lecture. This document on its own, is sufficient to get a top mark in your end of year exam.

Hochschule
Kurs










Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Hochgeladen auf
22. oktober 2021
Anzahl der Seiten
27
geschrieben in
2020/2021
Typ
Notizen
Professor(en)
Alexander dobson
Enthält
Alle klassen

Themen

Inhaltsvorschau

EC123 Notes

Topic 1: One-variable Optimisation: A function maps each element of a domain to a unique
element of its range or codomain. y is the value of the function or output.
An inequality is strict if replacing any “less than” and “greater than” signs with equal signs
never gives a true expression.

1.1: Convexity and concavity: Given that it is twice continuously differentiable, a function
f(x) is convex over D if and only if f '' ( x ) ≥ 0 for all x ∈ D ;concave over D if and only if f '' ( x ) ≤ 0
for all x ∈ D .
So, it follows that if a function is convex, its 1st derivative is increasing. And vice-versa.
A linear function is both convex and concave at the same time. y = ax + b, f’(x) = b, f’’(x) = 0

Example: Consider the function f(x) = ln(x) whose domain is X =R++¿¿ (all x which are +)
' 1 '' −1
f ( x )= >0 , f ( x ) = 2 <0
x x
Thus, the natural logarithm is increasing and concave.

Alternatively, A function f(x) is convex if for any two x1, x2 and any t ∈ [ 0,1 ] ,
tf ( x 1 ) + ( 1−t ) f ( x 2 ) ≥ f ( t x 1+ ( 1−t ) x 2 )
If the inequality holds as ≤ ,then the function is concave.

Equivalently: A function f is concave (convex) if the line segment that joins any two points
on the graph is below (above) the graph, or on the graph.

1.2: Extreme Points: Formally, c ∈ D is a maximum point if f ( x ) ≤ f ( c ) for all x ∈ D.
If c ∈ D is either a maximum or minimum point, then c is an extreme point or optimal point.
If the inequalities above are strict, then we refer to the extreme point as a strict maximum
or strict minimum.
Suppose the function f(x) is differentiable over an interval I and that c is an interior point of
I. Then c is an extreme point in I only if it is a stationary point, that is f’(c) = 0 (FOC)
Therefore, for the interior points of a differentiable function, a necessary condition for an
extreme point is that it is also a stationary point.
However, an extreme point does not imply a stationary point:
1) If a function is not differentiable over the whole domain
Minimum at d (but not differentiable here) and a maximum at b but neither are
stationary points (b is not an interior point)
2) A function has stationary points such as a local maximum/minimum or
inflection point, but these are not extreme points.
Thus f’(x) = 0 is not a sufficient condition to identify extreme points.

1.3: Existence of extreme points: If f is a continuous function over a closed bounded interval
[ x 0 , x 1 ] , then there exists a point c ∈[x 0 , x 1 ] where f has a minimum and a point
d ∈ [ x 0 , x 1 ] where f has a maximum so that f (c )≤ f ( x)≤ f ( d ) for all x ∈[ x 0 , x 1 ]
This is the extreme value theorem (EVT).

,If f is continuous over the closed bounded interval [ x 0 , x 1 ] and differentiable in the open
interval ( x 0 , x 1 ) ,then there exists at least one interior point c ∈ ( x 0 , x 1 ) such that
'
f ( x 1 ) −f ( x 0 )
f ( c )= This is the mean value theorem
x1 −x0
Rolle’s theorem: if a function is both continuous and differentiable over some interval
[x0, x1] where f(x0) = f(x1), there exists at least one stationary point.

1.4: Local extreme points: Sometimes it is useful to emphasize that a stationary point is a
maximum or a minimum but only over a given domain, rather than the whole domain.
So, a function f(x) has a local minimum/maximum at c if there exists an interval (a,b) such
that c ∈( a , b) and c is a maximum/minimum for the function defined over the interval (a,b).
Every extreme point is a local extreme point but not vice versa.

1.5 Inflection points: Points at which a function changes from being convex to being
concave, or vice versa, are called inflection points.
Inflection points are another way in which the FOC may fail to identify a maximum or
minimum, since the slope of the function may also equal 0 at such a point.
To identify an inflection point look at the second derivative and check whether the
signs flip below and above. If c is an inflection point, then f’’(c) = 0 and f’’(c) changes
sign for slightly smaller/bigger points on the domain. Or equivalently, the third order
derivative at c is non zero, since the slope here is at a maximum or minimum.

1.6: Sufficient conditions for extreme points: Suppose f(x) is a convex (concave) continuous
function over an interval I. If c is a stationary point for f in the interior of I, then c is a
minimum (maximum) point for f in I. (Sufficient but not necessary)

General conditions for stationary points:
Suppose the function f(x) has a stationary point x = c, that is f’(c) = 0.
Let f ( j) (x) be the jth derivative (provided it exists) and n the smallest number such that
(n )
f ( c ) ≠ 0.Then c is:
1) A local maximum if n is even and f (n )(c)<0
2) A local minimum if n is even and f (n )( c)>0
3) An inflection point if n is odd
Example: f(x) = −( x−1 )4 : f’(x) = -4(x – 1)3 = 0, therefore, x = 1
Differentiating again: f ' ' ( x )=−12 ( x −1 )2 , f ' ' (1 )=0
f (3 ) ( x )=−24 ( x −1 ) , f (3 ) ( 1 )=0
f (4 ) ( x ) =−24 , f 4 (1 )=−24
So the first nonzero derivative is the 4th, therefore n = 4 = even we see that f(4)(1) ¿ 0 .
Therefore, x = 1 is the value that gives a local maximum

Extreme points: The maximum and minimum of a differentiable univariate function f(x)
defined on a closed, bounded interval [a, b] can be obtained by identifying and comparing
all possible candidate points: any local maxima or local minima (by classifying all stationary
points), and the end points of the interval a and b
We can also classify a stationary point as an extreme point immediately if the specific
circumstances under which the FOC are sufficient to guarantee a max (or minimum) hold

, Topic 2: Logic and Useful Definitions:
2.1: Logic: A implies B, contraposition and equivalence:
A is necessary but not sufficient for B. We say: B holds only if A holds: B ⟹ A
A is neither necessary nor sufficient for B
A is sufficient but not necessary for B: We say B holds if A holds: A ⟹ B
A is both necessary and sufficient for B. We say: B holds if and only if A
holds (or: B holds iff A holds): A ⟺ B

The contrapositive principle: Notice that if A ⟹ B , this also suggests that not B implies not A
Every mathematical theorem can be formulated as one or more implications of the form
A ⟹ B with A being premises, assumptions and B being conclusions (deductively inferred).
A direct proof involves starting with the premises and working forward to the conclusions
An indirect or contrapositive proof exploits equivalence and proves implication by supposing
B is not true, and demonstrating that A must logically not be true either.
Note: deductive reasoning (logic) and inductive reasoning (inferred from observations)
Example: Show that f’’(x) = 0 is not sufficient for an inflection point
Consider the function: f(x) = x4
The derivatives are f’(x) = 4x3, f’’(x) = 12x2
Thus x = 0 yields f’’(x) = 0. However, f’’(x) ¿ 0 for all other x. Thus we need to check two
things: that the second derivative is zero (necessary condition) and that the function
changes from convex (concave) to concave (convex).

2.2: Continuity and Limits: Graphically, a function is continuous if its graph is connected and
has no jumps (your pen should not leave the paper while drawing).
A function f ( x ) is continuous at x=aif lim f ( x )=f ( a)
x→a
This can go wrong in the case where f(a) is not defined (0/0 for example) – the function is
not continuous everywhere -> use l’hopital’s rule

We can make f(x) as close as we like to A by making x sufficiently close to a, we say that
lim f ( x )= A . Or more formally:
x→ a

The function f(x) has a limit A as x tends to a, denoted by lim
x→ a
f ( x )= A , for each number ε > 0
there exists a number δ >0 such that |f ( x ) −A|< ε for every x with 0 ¿|x−a|<δ
With ε being the error in the measurement of the value at the limit and δ the distance to the
limit point. No matter how small ε is, we can find a δ that is small enough to be consistent
with the value of ε

One sided limits: It seems that the function has a limit at a if we take
−¿ ¿
values of x that are smaller than a. Mathematically, f ( x ) → A as x → a ,
where the minus in the superscript of a denotes that we are taking values
of x that come from the left (or below)
A necessary and sufficient condition for the limit at x = a to exist is that the
two one-sided limits of f at a exist and are equal.

2.3: L’Hopital’s Rule and Cobb-Douglas Functions:
15,19 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Bewertungen von verifizierten Käufern

Alle Bewertungen werden angezeigt
2 Jahr vor

3,0

1 rezensionen

5
0
4
0
3
1
2
0
1
0
Zuverlässige Bewertungen auf Stuvia

Alle Bewertungen werden von echten Stuvia-Benutzern nach verifizierten Käufen abgegeben.

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
bspurs11 The University of Warwick
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
134
Mitglied seit
4 Jahren
Anzahl der Follower
67
Dokumente
47
Zuletzt verkauft
1 Jahren vor

3,9

17 rezensionen

5
6
4
4
3
6
2
1
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen