100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

Résumé Resume mathématique (PNFM1A1)

Bewertung
-
Verkauft
-
seiten
20
Hochgeladen auf
13-09-2021
geschrieben in
2021/2022

cours sur les polynômes

Hochschule
Kurs










Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Hochgeladen auf
13. september 2021
Anzahl der Seiten
20
geschrieben in
2021/2022
Typ
Zusammenfassung

Themen

Inhaltsvorschau

Polynômes


Les polynômes sont des objets très simples mais aux propriétés extrêmement riches. Il permettent de faire une
étude algébrique des équations, comme les équations de degré 2 : ax2 + bx + c = 0, que vous savez déjà résoudre.
Avez-vous déjà vu une méthode de résolution des équations de degré 3 ? La résolution de telles équations a fait
l’objet de luttes acharnées dans l’Italie du X V I e siècle. Un concours était organisé avec un prix pour chacune de
trente équations de degré 3 à résoudre. Un jeune italien, Tartaglia, trouve la formule générale des solutions et
résout les trente équations en une seule nuit ! Cette méthode que Tartaglia voulait garder secrète sera quand
même publiée quelques années plus tard comme la « méthode de Cardan ».

Dans ce chapitre, après quelques définitions des concepts de base, nous allons étudier l’arithmétique des
polynômes. Il y a une grande analogie entre l’arithmétique des polynômes et celles des entiers. On continue avec
un théorème fondamental de l’algèbre : « Tout polynôme de degré n admet n racines complexes. » On termine avec
les fractions rationnelles : une fraction rationnelle est le quotient de deux polynômes.

Nous vous encourageons à compléter la lecture des différents cours de ce chapitre avec les références citées
dans les chapitres précédents disponibles à la Bibliothèque Universitaire. En fouillant dans les rayons de la BU,
vous trouverez d’autres références qui vous plairont peut-être encore plus.

Dans ce chapitre K désignera l’un des corps R ou C (on ne cherchera pas à savoir ce qu’est un corps ce
semestre mais les plus férus d’entre vous trouveront facilement un livre à la BU pour le découvrir).




1

, 2


Cours Magistral n°16


Pré-requis : Objectifs :
– maîtriser les opérations algébriques élémentaires – maîtriser les opérations sur les degrés
– savoir poser une division euclidienne – connaître la notion de divisibilité pour des
polynômes
– savoir effectuer une division euclidienne avec
des polynômes


1. Les polynômes et leur degré
Nous présentons la notion de polynôme et les définitions sous-jacentes, comme la notion de degré. Nous exposons
ensuite certaines propriétés utiles vérifiées par le degré.

Définition 1

Un polynôme à coefficients dans K est une expression de la forme

P ( X ) = a n X n + a n−1 X n−1 + · · · + a 2 X 2 + a 1 X + a 0 ,

avec n ∈ N et a 0 , a 1 , . . . , a n ∈ K. L’ensemble des polynômes est noté K[ X ].
• Les a i sont appelés les coefficients du polynôme.
• Si tous les coefficients a i sont nuls, P est appelé le polynôme nul, il est noté 0.
• On appelle le degré de P le plus grand entier i tel que a i 6= 0 ; on le note deg P . Pour le degré du
polynôme nul on pose par convention deg(0) = −∞. On utilisent également les conventions suivantes :
– pour n ∈ N : −∞ < n
– pour n ∈ N : n + (−∞) = −∞
• Un polynôme de la forme P ( X ) = a 0 avec a 0 ∈ K est appelé un polynôme constant. Si a 0 6= 0, faites
attention : son degré est 0.
• Deux polynômes sont égaux si et seulement s’ils ont les mêmes coefficients.


Remarque 1

S’il est certainement plus simple d’imaginer que X désigne un nombre de R ou C, il faut néanmoins savoir
que l’on peut substituer à X un autre polynôme, une matrice. . . Nous ne rentrerons pas dans ces détails mais
une fonction polynomiale ne désigne pas nécessairement un polynôme.


Exemple 1

• L’expression X 3 − 5 X + 34 est un polynôme de degré 3.
• L’expression X n + 1 est un polynôme de degré n.
• L’expression 2 est un polynôme constant, de degré 0.


L’ensemble des polynômes K[ X ] est muni d’une multiplication distributive basée sur la multiplication dans K et
sur la multiplication des puissances de X .

Définition 2

Soient n et m deux entiers. Nous définissons

X n × X m := X n + m .
Pp Pq
Soient P ( X ) = i =0
a i X i et Q ( X ) = j =0
b j X j deux polynômes de K[ X ]. Nous définissons le produit P × Q par

pX
+q k
c k X k , avec c k :=
X
(P × Q )( X ) := a m b k−m où a i = 0 si i > p et b j = 0 si j > q.
k=0 m=0

, 3



Exemple 2

La multiplication de P ( X ) = X 3 − 5 X + 3 par Q ( X ) = X 2 + 1 donne

(P × Q )( X ) = X 5 − 4 X 3 + 3 X 2 − 5 X + 3.


Proposition 1

Soient P et Q deux polynômes à coefficients dans K. Nous avons les relations suivantes :

deg(P × Q ) = deg P + deg Q


deg(P + Q ) É max(deg P, deg Q )



Démonstration
Proposition 2.

• L’ensemble des polynômes K[ X ] est intègre :

∀P, Q ∈ K[ X ], (PQ = 0 ⇔ P = 0 ou Q = 0).

• De façon équivalente : ∀P, Q, R ∈ K[ X ], (PQ = RQ ⇔ Q = 0 ou P = R ).

Remarque 2
y
Cette propriété n’est pourtant pas si banale. En effet, le produit
de deux fonctions quelconques peut être nul sans qu’aucune des
deux ne le soit.
1
Prenons les fonctions continues f , g : R → R définies par les for-
Cg Cf
mules :
0 1 x
f ( x) = x − | x| et g( x) = x + | x| .

Nous avons f g = 0 bien qu’aucune des deux fonctions f et g ne
soit nulle. Ce phénomène est impossible avec des fonctions poly-
nomiales définies sur R ou C ou avec des polynômes.



Définition 3

• Les polynômes comportant un seul terme non nul (du type a k X k ) sont appelés monômes.
• Soit P ( X ) = a n X n + a n−1 X n−1 + · · · + a 1 X + a 0 , un polynôme avec a n 6= 0. On appelle terme dominant
le monôme a n X n . Le coefficient a n est appelé le coefficient dominant de P .
• Si le coefficient dominant est 1, on dit que P est un polynôme unitaire.


Exemple 3

Le polynôme P ( X ) = 3 X 7 + 6 X 4 − 8 X 3 + 2 X + 10 est une somme de 5 monômes. Son terme dominant est 3 X 7
et son coefficient dominant est 3.
6,49 €
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
emmasoares

Lerne den Verkäufer kennen

Seller avatar
emmasoares Toulouse III - Université Paul Sabatier
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
1
Mitglied seit
4 Jahren
Anzahl der Follower
1
Dokumente
7
Zuletzt verkauft
4 Jahren vor

0,0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen