100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary - Integration (acid-base balance) - Homeostasis and Organ Systems (BBS1002)

Beoordeling
-
Verkocht
-
Pagina's
9
Geüpload op
20-12-2025
Geschreven in
2025/2026

These notes provide a clear, structured, and comprehensive overview of the BBS1002 course, covering all essential lecture content and key concepts from Silverthorn and Marieb. Designed with the exam in mind, the notes compile all relevant information in one place, making it easy to review efficiently and focus on high-yield topics. Perfect for preparing for exams quickly while understanding core mechanisms.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
20 december 2025
Aantal pagina's
9
Geschreven in
2025/2026
Type
Samenvatting

Voorbeeld van de inhoud

Integration
Friday, 5 December 2025 13:35




How the body maintains pH

• The body must keep pH in a very narrow range (between 7.35 and 7.45).
→ To prevent this, the body uses three lines of defense.
• Molecules present in blood, cells, and urine that act immediately to resist pH changes.
→ Do not require organs to act in the moment; they work instantly by binding or releasing H⁺.

→ Lowest survivable pH ≈ 6.8
→ Highest survivable pH ≈ 7.8

Buffer systems

1) Chemical buffers

→ First line of defense.
→ Fastest response (almost instant).

→ How buffers work:
→ They bind free H⁺ when pH falls (acidosis)
→ They release H⁺ when pH rises (alkalosis).

→ Main chemical buffer systems:

► Bicarbonate buffer (HCO₃⁻ / H₂CO₃)

• Most important in extracellular fluid buffer.
• Controlled by lungs (CO₂) and kidneys (HCO₃⁻).
• Especially effective at acidic pH (≈6.8).

• Components:
§ Carbonic acid (H₂CO₃) — weak acid
§ Bicarbonate ion (HCO₃⁻) — weak base
§ Bicarbonate salts: NaHCO₃ in plasma; KHCO₃ and MgHCO₃ in cells.

• H₂CO₃ supply is almost limitless because it comes from CO₂ (respiratory control).
• HCO₃⁻ concentration is regulated by the kidneys.
• Buffering power depends on the amount of alkaline reserve (available HCO₃⁻).
§ If all HCO₃⁻ is used up, buffering stops.


• Mechanism:
→ When a strong acid is added (e.g. HCl):
→ The bicarbonate (HCO₃⁻) acts as a weak base and binds the added H⁺:
HCl + NaHCO₃ → H₂CO₃ + NaCl
→ Goes from strong acid to weak acid.
→ Thus, pH decreases only slightly.


→ When a strong base is added (e.g., NaOH):
§ Carbonic acid (H₂CO₃) donates H⁺ to neutralize OH⁻:
NaOH + H₂CO₃ → NaHCO₃ + H₂O
→ Goes from strong base to weak base.
→ Thus, pH increases only slightly.


► Protein buffer

• Found in intracellualr fluid, blood plasma and RBC's.

• Protein buffer systems:
→ Plasma protein buffers
→ Albumin is a plasma buffer.
→ Intracellular protein buffers
→ Hemoglobin buffer system
• Proteins are good buffers as they contain amino acids with:
→ Carboxyl groups (–COOH) - weak acids
→ Amino groups (–NH₂) - weak bases

• Mechanism:
→ As a weak acid (when pH rises):
→ Releases H⁺ to counteract alkalosis
R–COOH ↔ R–COO⁻ + H⁺

, Intracellular protein buffers
→ Hemoglobin buffer system
• Proteins are good buffers as they contain amino acids with:
→ Carboxyl groups (–COOH) - weak acids
→ Amino groups (–NH₂) - weak bases

• Mechanism:
→ As a weak acid (when pH rises):
→ Releases H⁺ to counteract alkalosis
R–COOH ↔ R–COO⁻ + H⁺

→ As a weak base (when pH falls):
→ Binds H⁺ to prevent acidosis.
R–NH₂ + H⁺ ↔ R–NH₃⁺

• Hemoglobin buffer system:
→ Inside RBCs:
→ CO₂ enters RBC and forms H₂CO₃, which can dissociate into H⁺ + HCO₃⁻.
→ Hemoglobin (Hb⁻ when deoxygenated) binds H⁺:
H⁺ + Hb⁻ → HHb
→ This prevents large pH changes in venous blood.
→ Hemoglobin acts as an amphoteric molecule so it can accept or donate H⁺.


► Phosphate buffer
• Strong buffer in intracellular fluid and kidneys.
→ Concentration of phosphate is higher inside cells.
→ In kidney tubules, phosphate helps excrete H⁺.

• Components:
→ Dihydrogen phosphate (H₂PO₄⁻) — weak acid
→ Monohydrogen phosphate (HPO₄²⁻) — weak base

• Mechanism:
→ When a strong acid is added:
HPO₄²⁻ binds H⁺ → H₂PO₄⁻

→ When a strong base is added:
H₂PO₄⁻ donates H⁺ → HPO₄²⁻


Buffer System Components Main Location Strengths
Bicarbonate H₂CO₃ / HCO₃⁻ ECF Most important ECF buffer; linked to lungs & kidneys
Phosphate H₂PO₄⁻ / HPO₄²⁻ ICF and urine Strong in ICF; major role in renal H⁺ excretion
Protein (incl. Hb) R–COOH/R–NH₂ groups ICF & plasma Most buffering capacity; hemoglobin very powerful

→ Buffers prevent sudden changes in pH when acid is added or removed.
→ They buy time until the lungs and kidneys act.

Chemical Buffer Organ Involved How They Interact
Bicarbonate buffer Lungs Regulate CO₂ (H₂CO₃)
Kidneys Regulate HCO₃⁻ reabsorption & H⁺ excretion
GI tract Secretes & absorbs HCO₃⁻; vomiting/diarrhea alter HCO₃⁻
Phosphate buffer Kidneys Used as major urinary buffer to excrete H⁺
Protein buffer Lungs Hb binds H⁺ during CO₂ transport
Kidneys Maintain protein levels & acid–base environment
GI tract Provides amino acids for plasma proteins

---------------------------------------------------------------------------------------------------------------------------------------

2) Physiological buffers

→ Organ-level systems that restore acid–base balance after chemical buffers act.
→ These systems do not buffer chemically.
→ They adjust the components of chemical buffers over minutes to days.
→ Chemical buffers temporarily bind to H+ but cannot remove acid.
→ Only physiological buffers (lungs and kidneys) can eliminate acid from the body.

► Respiratory buffer system (ventilation)

→ Second line of defense (acts in minutes).
→ Ventilation corrects 75% of acute pH disturbances.
→ This is why ventilation is considered a powerful, fast-acting physiological buffer.
→ The lungs regulate CO₂, which is in equilibrium with carbonic acid.
CO₂ + H₂O ↔ H₂CO₃ ↔ H⁺ + HCO₃⁻

→ If pH drops (acidosis):
→ Chemoreceptors sense increased H⁺ or CO₂
→ Ventilation increases (hyperventilation)
€7,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
lienvanderstraeten

Ook beschikbaar in voordeelbundel

Thumbnail
Voordeelbundel
HOMEOSTASIS AND ORGAN SYSTEMS (BBS1002) - COMPLETE SUMMARY
-
7 2025
€ 52,43 Meer info

Maak kennis met de verkoper

Seller avatar
lienvanderstraeten Maastricht University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
Nieuw op Stuvia
Lid sinds
18 uur
Aantal volgers
0
Documenten
7
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen