WISKUNDIGE BEGRIPPEN & TECHNIEKEN
- Basisfuncties
Veeltermfuncties:
Functie y = 3x + 5 met 3 = richtingscoëfficiënt
dus 3 = tan(θ )
Goniometrische functies:
Boog( A−B)
Hoek α (¿ radialen)=
Straal r (M −B of M − A)
360° = 2πrad
Y = sin(α) X = cos(α)
sin(x) functie:
y = 0 -> 0 rad
y = 1 -> π/2 rad
y = 0 -> π rad
y = -1 -> 3π/2 rad
cos(x) functie:
y = 1 -> 0 rad
y = 0 -> π/2 rad
y = -1 -> π rad
y = 0 -> 3π/2 rad
Exponentiële & Logaritmische functies:
x
F ( x )=a
F ( x )=a log x
- Limieten
lim ( f ( x ) + g ( x ) ) =¿ lim f ( x ) +¿ lim g ( x ) ¿ ¿
x→ a x→ a x →a
lim ( f ( x ) ∙ g ( x ) )=¿ lim f ( x ) ∙ lim g ( x ) ¿
x→ a x→ a x→ a
lim f ( x )
f (x)
lim
x→ a ( ) g(x)
=¿
x →a
lim g ( x ) ¿
lim g ( x ) x→ a
x→a
, - Afgeleiden
Afgeleide in een punt:
∆ y y ( x +∆ x )− y ( x )
=
∆x ∆x
dy = y ' dx= ( dydx ) dx
Rekenregels afgeleiden:
d
( k ) =0
dx
d k
( x )=k x k−1
dx
d d d
( yz )=z ( y )+ y ( z )
dx dx dx
d d d
( yz )=z ( y )+ y ( z )
dx dx dx
d
(sin( x))=cos ( x )
dx
d
(cos( x ))=−sin( x )
dx
d kx
( e )=k e kx
dx
d 1
( ln( x) )=
dx x
x’’(t) = v’(t) = a(t)
Met hoeveel % neemt V van een bol toe als R toeneemt met 1%:
4
V = π R3
3
∆ V dV
≈ =4 π R2 ↔ ∆ V =4 π R2 ∙ ∆ R
∆ R dR
2
∆V 4 π R ∙∆ R 3∙∆R
= =
V 4 3 R
πR
3
,∆R ∆V 3∙∆ R
=1 % dus = =3 %
R V R
- Integralen
∫ k u ( x ) dx=k ∫ u ( x ) dx
k +1
∫ ( x k ) dx= x k+1
+C
1
∫ x dx=ln ( x ) +C
1
∫ ( e kx) dx= k e kx +C
∫ ln ( x ) dx=x ln (x )−x+ C
∫ sin ( x ) dx=−cos ( x ) +C
∫ cos ( x ) dx=sin ( x ) +C
Partiële integratie:
∫ f ( x ) ∙ g ' ( x ) dx=f ( x ) ∙ g ( x )−∫ g ( x ) ∙ f ( x ) dx
b a
∫ f ( x ) dx=−∫ f ( x ) dx
a b
Gemiddelde snelheid tussen a en b (in seconden):
b
1
¿ v(t)>¿ ∫ v ( t ) dt
b−a a
- Differentiaalvergelijkingen
Differentiaalvergelijking = vergelijking waar afgeleiden in voorkomen
Eerste orde differentiaalvergelijking = vergelijking met een afgeleide van
de eerste orde
Tweede orde differentiaalvergelijking = vergelijking met een afgeleide van
de tweede orde
Homogene differentiaalvergelijking: f(x) = 0
Niet-homogene differentiaalvergelijking: f(x) ≠ 0
,Lineaire differentiaalvergelijking bevat geen machten van afgeleiden
Stappen van differentiaalvergelijkingen:
Scheiden van veranderlijken
Integratie
E-macht berekenen
Oplossen naar x
- Eenheden & Dimensies
1mL = 1 (cm)^3 1L = 1 (dm)^3 1000L = 1 m^3
- Assenstelsel
Vergelijking cirkel: (x2 – x1)² + (y2 – y1)² =
R²
Straal cirkel = R
Coördinaten middelpunt cirkel (x1,y1)
Vergelijking vlak: ax + by + cz = d
Vlak xz heeft y = 0
Vlak yz heeft x = 0
Vlak xy heeft z = 0
Afstand van P(x1,y1,z1) – Q(x2,y2,z2) in de ruimte =
2 2 2
√ ( x 2−x 1 ) +( y 2− y 1 ) ( z 2−z 1 )
- Vectoren
a=√ x + y (vlak) of √ x 2+ y 2 + z 2 (ruimte)
2 2
⃗ ( ax , a y , a z ) ⋅ ( b x , b y , b z )=a x ⋅ b x + a y ⋅ b y + az ⋅ b z
a⃗ ⋅ b=
⃗
a⃗ ⋅ b=a ⋅ b ⋅ cos(θ)
, ax bx
ay
()( )(
by a y ⋅b z−a z ⋅b y
a⃗ × ⃗b= a z × bz = a z ⋅ b x −a x ⋅ b z
ax
ay
bx
by
a x ⋅b y −a y ⋅b x )
a⃗ × ⃗b=¿ vector met grootte a ⋅ b ⋅sin ( θ ) -> staat loodrecht op het vlak
gevormd door a⃗ en b⃗
- Logaritmische Schalen
log ( xy)=log ( x ) + log ( y )
x
log ( )=log ( x )−log ( y )
y
y
log ( x )= y log ( x )
MECHANICA
Studie van de beweging:
Kinematica: hoe bewegen voorwerpen?
Dynamica: waarom bewegen voorwerpen?
- Lineaire Beweging
Δv Δx v 0 +v Δx
a= v= v= =
Δt Δt 2 Δt
Als je een bal recht omhoog gooit:
Is de versnelling in elk punt hetzelfde
Is de snelheid in het hoogste punt 0
Is de versnelling in het hoogste punt verschillend van 0
Persoon A gooit een bal naar beneden en persoon B laat een bal
tegelijkertijd gewoon vallen -> de versnelling net na het loslaten van de
bal is bij beide A en B hetzelfde
Persoon A gooit een bal naar beneden en persoon B gooit een bal naar
boven, beide met beginsnelheid v0 -> beide ballen raken de grond met
dezelfde snelheid v
, Je gooit een steen verticaal van een berg, wanneer de steen 4m ver naar
beneden is gooi je nog een steen naar beneden -> tijdens de val vergroot
de afstand tussen de 2 stenen
- Beweging in 2 of 3 Dimensies (vlak of ruimte)
v x =v ⋅ cos θ v y =v ⋅ sin θ v y =v x ⋅ tanθ v=√ v 2x + v 2y
Bal 1 valt verticaal naar beneden en bal 2 wordt horizontaal afgeschoten -
> beide ballen komen op hetzelfde moment op de grond aan
Een balletje wordt verticaal naar boven afgeschoten uit een horizontaal
bewegende kar -> de bal belandt net achter de kar, ook al rolt de kar van
een berg
- Wetten van Newton
Kracht = datgene wat de snelheid van een voorwerp doet veranderen
1ste wet van Newton of traagheidswet:
- Een voorwerp zonder krachten, voert een eenparige beweging uit
met v = constant
- Als de resulterende kracht op een object 0 is, dan blijft een object in
rust
- Als een object een constante snelheid heeft, dan blijft dit bewegen
Mensen op de draaiende schijf zien een ‘kromme baan’ door de Coriolis-
kracht of schijnkracht
F a⃗ : Hoe groter de kracht, hoe groter de versnelling
⃗
1
a: Hoe groter de massa, hoe kleiner de versnelling
m
2de wet van Newton of onafhankelijkheidsbeginsel: Σ⃗
F =m⋅ a⃗
m1 ⋅ m2 N ⋅m2
Gravitatiekracht: F G=G ⋅
−11
met G = 6,67 ∙ 10
r2 kg
2
m N
F G=m ⋅ ⃗g
⃗ met g = 9,81 of op aarde
s
2
kg