100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Applied Linear Algebra – Complete Solutions Manual by Peter J. Olver & Chehrzad Shakiban | Step-by-Step Exercise Solutions (All Chapters Included)

Beoordeling
-
Verkocht
-
Pagina's
205
Cijfer
A+
Geüpload op
06-12-2025
Geschreven in
2025/2026

Master Applied Linear Algebra with this complete Solutions Manual by Peter J. Olver & Chehrzad Shakiban. Featuring step-by-step solutions for all exercises in every chapter, this manual is ideal for students and professionals seeking to strengthen their understanding of linear algebra concepts and excel in coursework, assignments, and exams. Key Features: Fully worked solutions for all chapters and exercises Step-by-step explanations for clarity and comprehension Perfect for homework help, exam prep, and concept mastery Ideal for mathematics, engineering, computer science, and applied math students From vector spaces and linear transformations to eigenvalues, matrices, and applications, this solutions manual is the ultimate study companion for mastering linear algebra effectively.

Meer zien Lees minder
Instelling
Algebra
Vak
Algebra











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Algebra
Vak
Algebra

Documentinformatie

Geüpload op
6 december 2025
Aantal pagina's
205
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

SOLUTION MANUAL
All Chapters Included




for

Applied Linear
Algebra
by

Peter J. Olver
and Chehrzad Shakiban
Second Edition

Undergraduate Texts in

Mathematics

,Table of Contents

Chapter 1. Linear Algebraic Systems ................................................... 1

Chapter 2. Vector Spaces and Bases ..................................................... 22

Chapter 3. Inner Products and Norms ................................................. 40

Chapter 4. Orthogonality ........................................................................ 59

Chapter 5. Minimization and Least Squares ..................................... 77

Chapter 6. Equilibrium ......................................................................... 94

Chapter 7. Linearity ............................................................................ 105

Chapter 8. Eigenvalues and Singular Values ................................... 124

Chapter 9. Iteration .............................................................................150

Chapter 10. Dynamics ........................................................................... 176

, Instructors’ Solutions Manual for
Chapter 1: Linear Algebraic Systems
Note: Solutions marked with a ⋆ do not appear in the Students’ Solutions Manual.




1.1.1. (b) Reduce the system to 6 u + v = 5, — 5 v = 5
; then use Back Substitution to solve
for u = 1, v = —1. 2 2


(c) Reduce the system to p + q — r = 0, —3 q + 5 r = 3, — r = 6; then solve for
p = 5, q = —11, r = —6.
(d) Reduce the system to 2 u — v + 2 w = 2, — 32 v + 4 w = 2, — w = 0; then solve for
u = 1 , v = — 4 , w = 0.
3 3
⋆ (e) Reduce the system to 5 x1 + 3 x2 — x3 = 9, 1 x2 — 2 x3 = 2 , 2 x3 = —2; then solve for
5 5 5
x1 = 4, x2 = —4, x3 = —1.
(f ) Reduce the system to x + z — 2 w = — 3, — y + 3 w = 1, — 4 z — 16w = — 4, 6w = 6; then
solve for x = 2, y = 2, z = —3, w = 1.

⋆ 1.1.2. Plugging in the values of x, y and z gives a + 2 b — c = 3, a — 2 — c = 1, 1 + 2 b + c = 2.
Solving this system yields a = 4, b = 0, and c = 1.

♥ 1.1.3. (a) With Forward Substitution, we just start with the top equation and work down.
Thus 2 x = —6 so x = —3. Plugging this into the second equation gives 12 + 3y = 3, and so
y = —3. Plugging the values of x and y in the third equation yields —3 + 4(—3) — z = 7, and
so z = —22.
⋆ (c) Start with the last equation and, assuming the coefficient of the last variable is /= 0, use
the operation to eliminate the last variable in all the preceding equations. Then, again as-
suming the coefficient of the next-to-last variable is non-zero, eliminate it from all but the
last two equations, and so on.
⋆ (d) For the systems in Exercise 1.1.1, the method works in all cases except (c) and (f ). Solv-
ing the reduced system by Forward Substitution reproduces the same solution (as it must):
(a) The system reduces to 3 x = 17 , x + 2 y = 3. (b) The reduced system is 15 u = 15 ,
2 2 2 2
3 u — 2 v = 5. (d) Reduce the system to2 3 u = 21 , 72u — v = 52, 3 u — 2 w = —1. (f ) Doesn’t
work since, after the first reduction, z doesn’t occur in the next to last equation.


√ ,
0
1.2.1. (a) 3 × 4, (b) 7, (c) 6, (d) ( —2 0 1 2 ), (e) . 2 ..
,
—6
√ , √ ,

.1 2 3
. 1 2 3
! 1 2 3 4, 1
. .
1.2.2. Examples: (a) .4 5 6.
,, ⋆ (b) 1 4 5
, (c) .4 5 6 7 .,, (e) . 2 ,..
7 8 9 7 8 9 3 3
! ! !
6 1 u 5
1.2.4. (b) A = , x= , b= ;
3 —2 v 5




1 ⃝c 2019 Peter J. Olver and Chehrzad Shakiban

, Chapter 1: Instructors’ Solutions Manual 3

, √ , √ ,
⋆ .
1 1 —1 p 0
(c) A = . 2 —1 3,
.
. , x = . q. , b = . 3. ;
, ,
—1 —1 0 r 6
√ , √ , √ ,
2 —1 2 u 2
—1 —1
.. .
. .
(d) A = 3,, x= v , , b = 1.
. .
,;
√ 3 0 ,—2 w 1
5 3 —1 √ , √ ,
x1 9

(e) A = ..
3 2 —1 . .
,, x=
. x . , b=.
2 , 5 .,;
1 1 2 x3 —1
√1 0 1 —2 , √ ,
x

—3 ,
. 2 —1 2 —1. . y. . —5.
(f ) A = . ., x =
. , b= . . .
.
0 —6 —4 2.
,
.
z, 2,
1 3 2 —1 w 1

1.2.5. (b) u + w = —1, u + v = —1, v + w = 2. The solution is u = —2, v = 1, w = 1.
(c) 3 x1 — x3 = 1, —2 x1 — x2 = 0, x1 + x2 — 3 x3 = 1.
The solution is x1 = 15, x2 = — 25, x3 = — 25.

(d) x + y — z — w = 0, —x + z + 2 w = 4, x — y + z = 1, 2 y — z + w = 5.
The solution is x = 2, y = 1, z = 0, w = 3.


√ , √
1 0 0 0 0 0 0 0 0 0,
. . .
0 1 0 0 0 0 0 0 0 0.
1.2.6. (a) I = . 0 0 1 0 0 ., O= 0 0 0 0 0 ..
. . .
. .
.
0 0 0 1 0, 0 0 0 0 0,
0 0 0 0 1 0 0 0 0 0

(b) I + O = I , I O = O I = O. No, it does not.
3 6 0!
1.2.7. (b) undefined, (c) , ⋆ (e) undefined,
—1 4 2√ ,

1 11 9, 9 —2 14
.
(f )
.
.3
.
—12 —12 .
,,
⋆ (h) . —8 6 —17 .
,.
.

7 8 8 12 —3 28

1.2.9. 1, 6, 11, 16.

√ , √2 0 0 0,
1 0 0
⋆ (b)
.
0 —2 0 0.
1.2.10. (a) 0 0 0 ., , . ..
0 0 3 0,
.
0 0 —1
0 0 0 —3

1.2.11. (a) True, ⋆ (b) true.
! !
x ! ax by ay
⋆ ♥ 1.2.12. (a) Let A = y
. Then AD = = ax = DA, so if a /= b these
z w az bw bz bw
!
a 0
are equal if and only if y = z = 0. (b) Every 2 × 2 matrix commutes with 0 a = a I.




⃝ c 2019 Peter J. Olver and Chehrzad Shakiban

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
ScholarsCorner Princeton University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
47
Lid sinds
10 maanden
Aantal volgers
11
Documenten
1787
Laatst verkocht
1 week geleden
Scholar's Corner - Your go-to hub for academic excellence.

Welcome to Scholar's Corners Your trusted source for high-quality, -based test banks, flashcards, and study bundles designed to help you excel in Nursing, NCLEX, Medicine, Business, and Law. We write accurate, exam-focused materials sourced from top Global. colleges, ensuring you study efficiently and pass with confidence. ✅ NCLEX & Nursing Exam Prep ✅ Medical & Business Study Guides ✅ Flashcards for Fast Revision ✅ Verified Answers with Rationales ✅ Easy-to-use, downloadable files

Lees meer Lees minder
4,6

9 beoordelingen

5
7
4
0
3
2
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen