Year 9 Maths
[-6]
[9] - ANS-6 left, 9 up
\[(-)w / x]
[(-)y / z] - ANS-w: left
x: right
y: down
z: up
\[5]
[2] - ANS-5 right, 2 up
\b - ANS-4 / b
\17 - 8x = 1
Find x - ANS-17 = 1 + 8x
16 = 8x
2=x
\2 Key codes for sim eq: - ANS-"(x) - (y)" and "sub into (x)"
\2/3 + 1/4 = 8/12 + 3/12 = 11/12 so
2/a + 3/b = ? - ANS-2b/ab + 3a/ab = (2b + 3a) / ab
\24x / 3xy - ANS-y = 8 / y
\3/4x + 1/x = ? - ANS-3x/4x^2 + 4x/4x^2 = 7x / 4x^2 = x
\3/m - 8/n = ? - ANS-3n/mn - 8m/mn = (3n - 8m) / mn
\3x - 2x + 10 = 8 - 3x - 18
Find x - ANS-x + 10 = - 10 - 3x
4x + 10 = - 10
4x = -20
x = -5
\4qp^p - ANS-4qp / 16 = qp / 4
\7(x + 4) + 6 - ANS-7x + 28 + 6 = 7x + 34
\Arc Lengths and Sector Areas: arc len = ? - ANS-(x / 360) x (2 x pi x r)
\Arc Lengths and Sector Areas: sec area = ? - ANS-(x / 360) x (pi x r^2)
\Changing the subject: always do what last? - ANS-sqrt
\Circles: a = ? - ANS-pi x r^2
\Circles: c = ? - ANS-2pi x r
\Code for expanding brackets: - ANS-F(irsts) O(uters) I(nners) L(asts)
\Cones: sa = ? - ANS-(pi x r x l) + (pi x r^2)
\Continuous data is ? - ANS-something you can measure (e.g. length, weight)
\Cylinders: sa = ? - ANS-(2 x pi x r) x (r + h)
\Cylinders: v = ? - ANS-pi x r^2 x h
\Decrease by 25%: - ANS-x(1-0.25) = x0.75
\Discrete data is ? - ANS-something you can count (e.g. no. of siblings)
\Dividing Algebraic Fractions: 12a / 3 = ? - ANS-4a
[-6]
[9] - ANS-6 left, 9 up
\[(-)w / x]
[(-)y / z] - ANS-w: left
x: right
y: down
z: up
\[5]
[2] - ANS-5 right, 2 up
\b - ANS-4 / b
\17 - 8x = 1
Find x - ANS-17 = 1 + 8x
16 = 8x
2=x
\2 Key codes for sim eq: - ANS-"(x) - (y)" and "sub into (x)"
\2/3 + 1/4 = 8/12 + 3/12 = 11/12 so
2/a + 3/b = ? - ANS-2b/ab + 3a/ab = (2b + 3a) / ab
\24x / 3xy - ANS-y = 8 / y
\3/4x + 1/x = ? - ANS-3x/4x^2 + 4x/4x^2 = 7x / 4x^2 = x
\3/m - 8/n = ? - ANS-3n/mn - 8m/mn = (3n - 8m) / mn
\3x - 2x + 10 = 8 - 3x - 18
Find x - ANS-x + 10 = - 10 - 3x
4x + 10 = - 10
4x = -20
x = -5
\4qp^p - ANS-4qp / 16 = qp / 4
\7(x + 4) + 6 - ANS-7x + 28 + 6 = 7x + 34
\Arc Lengths and Sector Areas: arc len = ? - ANS-(x / 360) x (2 x pi x r)
\Arc Lengths and Sector Areas: sec area = ? - ANS-(x / 360) x (pi x r^2)
\Changing the subject: always do what last? - ANS-sqrt
\Circles: a = ? - ANS-pi x r^2
\Circles: c = ? - ANS-2pi x r
\Code for expanding brackets: - ANS-F(irsts) O(uters) I(nners) L(asts)
\Cones: sa = ? - ANS-(pi x r x l) + (pi x r^2)
\Continuous data is ? - ANS-something you can measure (e.g. length, weight)
\Cylinders: sa = ? - ANS-(2 x pi x r) x (r + h)
\Cylinders: v = ? - ANS-pi x r^2 x h
\Decrease by 25%: - ANS-x(1-0.25) = x0.75
\Discrete data is ? - ANS-something you can count (e.g. no. of siblings)
\Dividing Algebraic Fractions: 12a / 3 = ? - ANS-4a