100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary of Management Research Methods 1

Beoordeling
-
Verkocht
6
Pagina's
32
Geüpload op
30-01-2021
Geschreven in
2020/2021

Welcome to this document! Here I have summarized the basics and the theories that were given during the classes. Also, you will find a few examples, which could help you understand the theories. You can find an Index to see if the theories in your class are explained in this summary. This summary is based on classroom noted and the theories given on my final exam (Grade 9.5). *This course is given to the Pre-Master students of multiple studies! For example, Accountancy & Control and Business Administration. Please do ask if you have any questions. *Bundle available with Management Research Methods 2.

Meer zien Lees minder












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
30 januari 2021
Bestand laatst geupdate op
2 februari 2021
Aantal pagina's
32
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

2021




Management Research
Methods 1
A SUMMARY FOR PRE-MASTER ACCOUNTANCY & CONTROL
(5 EC) / VERSION 1.2

,Index
Chapter 1. Data ....................................................................................................................................... 3
1.1 What is Data? .......................................................................................................................... 3
1.2 Level of Measurement ............................................................................................................ 4
1.2.1 Why is this relevant? ...................................................................................................... 4
1.3 Data collection ........................................................................................................................ 5
1.3.1 Representative ................................................................................................................ 5
1.3.2 Validity ............................................................................................................................ 5
1.3.3 Measurement error ........................................................................................................ 6
1.4 Data analysis ........................................................................................................................... 7
1.4.1 Location ........................................................................................................................... 7
1.4.2 Dispersion ....................................................................................................................... 7
1.4.3 Other properties ............................................................................................................. 8
1.4.4 Plotting Data ................................................................................................................... 9
Chapter 2. Probability ........................................................................................................................... 10
2.1 What’s probability? .............................................................................................................. 10
2.2 Relation between data and probability ............................................................................... 10
2.3 Categorical probability ......................................................................................................... 10
2.3.1 Univariate categorical probability distributions .......................................................... 10
2.3.2 Bivariate categorical probability distributions ............................................................ 11
2.3.3 Univariate numerical probability distributions ........................................................... 12
2.4 Q-Q-plots ............................................................................................................................... 13
2.4.1 Practical advice for using Q-Q-plots ............................................................................. 13
Chapter 3. Hypothesis Testing: Introduction & One-Sample T-test................................................ 15
3.1 Why we use hypothesis testing............................................................................................ 15
3.1.1 Illustration ..................................................................................................................... 15
3.1.2 Decision Making............................................................................................................ 15
3.1.3 Alternative approach: Critical Region .......................................................................... 15
3.2 What do we need for a hypothesis test? ............................................................................. 16
3.2.1 Example ......................................................................................................................... 16
3.3 Steps doing a Hypothesis test .............................................................................................. 16
3.3.1 Example ......................................................................................................................... 16
3.4 One-Sample T-test ................................................................................................................ 18
3.4.1 Example ......................................................................................................................... 18
3.5 Testing a mean ...................................................................................................................... 18
3.5.1 Example ......................................................................................................................... 19

,Chapter 4. Hypothesis Testing: Correlation and Association .............................................................. 20
4.1 All the Hypothesis tests ........................................................................................................ 20
4.2 Relationship between two numerical variables .................................................................. 20
4.2.1 Calculation......................................................................................................................... 20
4.2.2 Correlation Test ................................................................................................................ 21
4.3 Chi-square test ...................................................................................................................... 22
Chapter 5. Hypothesis Testing: Paired Sample T-test and Independent Sample t-test ..................... 24
5.1 Central limit Theorem........................................................................................................... 24
5.2 Independent Sample T-test (Two-sample T-test) ................................................................ 25
5.3 Paired Sample T-test ............................................................................................................. 26
Chapter 6. Overview and summary ..................................................................................................... 28
6.1 The Hypothesis Test .............................................................................................................. 28
6.1.1 Procedure ...................................................................................................................... 28
6.2 One-Sample T-test ................................................................................................................ 28
6.3 Independent Sample t-test................................................................................................... 29
6.4 Paired Samples t-test ............................................................................................................ 29
6.5 Levene’s test for equal variances ......................................................................................... 29
6.6 Kolmogorov Smirnov test ..................................................................................................... 29
6.7 Pearson correlation test. ...................................................................................................... 29
6.8 Chi-square test for dependency ........................................................................................... 30
6.9 Examples ............................................................................................................................... 30
6.9.1 Example 1 ...................................................................................................................... 30
6.9.2 Example 2 ...................................................................................................................... 30
6.9.3 Example 3 ...................................................................................................................... 30
6.9.4 Example 4 ...................................................................................................................... 30
6.9.5 Solutions for the Examples ........................................................................................... 31

, 3


Chapter 1. Data
To do research, we require data. Once we have data, we are able to do analysis. This is the reason we
are going to discuss the general terminology, concepts, principles and techniques of statistical
analysis. We will do most the research with the software SPSS.

1.1 What is Data?
Most people think about numbers when thinking about data. However, data can also be words or
any other information. The only difference here is that every kind of data requires different statistical
techniques to analyze this data. For example, your name and gender can be data.

Data has a fixed structure because this way we know what belongs to what. To do this we look at the
difference between variables and units. Variables are properties that is being measured, for
example, your age and name. These are your properties. When you do analysis, you look at variables
at different people or cases. Those are units. When we look at name, we can measure it over
different units.

This means that:
Units – Cases like case number or Names of different people.
Properties – This is being measured of the units.
Structures – If we look at name, we can measure it over different units.

Lets do an example
Consider this case: “Consider bank transfers as stated in the table you can see below. These bank
transfers have to be corrected, adjusted or rejected. In any case, every case has a case number. Also,
every payment has a sender-id, type (Like Annually or One Time Transfer). Lastly, there is the time
where the case is open. Once the bank transfer came in, the time started because then the bank
collected the data (Time open). The time pending is when the bank waits for the third party input and
can’t influence the time. The total time is when adding these two together. The Number of Pending
Iterations is the number that shows how many times it went from one partner to the other.

Case no. Sender-ID Type Total Time Time open Time No. of
pending pending
iterations
EX04001 386 AN 29.73 20.8 8.93 3
EX04020 7535 OX 6.83 5.54 1.29 2
EX04030 3577 NU 6.86 6.86 0.00 0
EX04035 3546 NU 6.93 4.77 2.16 1
EX04065 3656 IC 19.81 0.28 19.52 4
EX04150 2895 SN 5.70 5.70 0.00 0
EX04820 3589 AN 7.63 6.34 1.29 1
EX04950 7595 NU 6.84 6.84 0.00 0
EX05200 85401 OX 13.55 1.60 11.94 2
When we look at what we did before, we can acknowledge that the unit is a case. There is a total of 9
measured units. For each unit, we have measured several variables. These variables are the
properties of the units. Each column represents one variable and each row (except the first one with
the titles) represents one unit.

Every property leads back to the case. This is the reason why the case is the unit. When we talk
about a unit, we mean the experimental unit. What is the data about? In this particular case, we have
cases and from each case we can look at the variables. This is an important structure, which is
required when using the software SPSS.

, 1.2 Level of Measurement
When we have data, we have to know how much information we are able to gain. We can distinguish
this in two categories, which are: “Categorical data” and “Numerical data”. This is important
because categorical data requires different figures, statistical tools to be analyzed, than numerical
data. Also, it is important to distinguish how much information we can get from these. This is the
reason why we split these categories into sub-categories:
• Categorical data (Figures: Circle Diagram, Bar Diagram)
o Binary data: Here we have two outcomes, for example: ”yes or no” / “dead or alive.”
o Nominal data: Here we have more than two outcomes, which does not have an
order, for example: “Omnivore, vegetarian or vegan.”
o Ordinal data: Here we have more than two outcomes, which does have an order, for
example: “Small, Medium and Large.”
• Numerical Data (Figures: Histogram, Boxplot)
o Discrete data: This is a number that is an absolute without anything in between, for
example: “1” or “2”. It can’t be 1.5 or 2.2 etc.
o Continuous data: This is a number that can be anything. This means it can also be
something between: “1” and “2”. For example, length can be 145.6cm.

When we go from “Binary data” down to “Continuous data”, we gain more information the more we
go down. For example, binary information gives less information than continuous information. A
good example: “I know whether my shirt is small, medium or large (Binary data). I know a little bit
about the size of the person I am dealing with. However, if I know the person body length
(Continuous data), I know much more about that person because the information is more precise.
The advantage of this more precise information is that we need less data to give an good estimate.”

When we have continuous data and we want to combine several data ranges together, it is possible:
• Body length less than 160 CM → Small
• Body length between 160 CM and 180 CM → Medium
• Body length above 180 CM → Large

Do note you can’t do the opposite.

1.2.1 Why is this relevant?
This information is important for your thesis. At the end of your master study, you are going to write
a thesis about a topic you choose. This is why you have to know how to do research. There are
different types of data, where we need different techniques.

As you know, there are different types of data, where different techniques are required for each. The
lower the amount of information in your data, the larger your sample has to be. To illustrate this lets
say we are going to throw a dart. To start off you will have binary data, two outcomes: a good and
bad region on the dartboard. You need a large amount of observations to get trustworthy data.
When we have more outcomes, you need less observation to be able to distinguish the units.

When we talk about amount of observations, it is most likely to be:
• Binary numbers needs at least 300 observations
• Ordinal numbers needs somewhere between 30-300 observations
• Numerical numbers needs at least 30

Now we know the different types of data, lets look back at table we made before. What are the types
of data for all these variables? (Please think about it as an exercise)

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
louist Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
475
Lid sinds
8 jaar
Aantal volgers
370
Documenten
48
Laatst verkocht
1 week geleden
Samenvattingen voor HBO Finance & Control en Master Accountancy & Control

Welkom! Ik ben Louis. Ik heb Bedrijfseconomie (Nu: Finance and Control) gestudeerd en ben hierbij Cum Laude + Honours afgestudeerd aan de Hogeschool Windesheim. Hierna heb ik mijn studie vervolgt aan de UvA, namelijk pre-master en master Accountancy & Control. Hierbij heb ik ook Honours gedaan en dus beide trajecten. Ik probeer altijd duidelijk te maken wat in mijn samenvattingen zit, maar mocht je vragen hebben. Stuur mij dan een bericht. Dank alvast!

Lees meer Lees minder
4,0

55 beoordelingen

5
22
4
20
3
6
2
3
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen