100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Biosystems Data Analysis (XM_0078) - COMPLETE COURSE

Beoordeling
5,0
(1)
Verkocht
9
Pagina's
73
Geüpload op
26-01-2021
Geschreven in
2020/2021

It is a summary of all the lectures, question hours, practicals and papers for Biosystems Data Analysis. It includes 8 lectures and all slides/videos/question hours/practicals belonging to those subjects. There are also notes/screenshots of some of my answers from the practicals and some R functions. It could not be more complete :) (but let me know if you are missing something!)

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
26 januari 2021
Aantal pagina's
73
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Biosystems Data Analysis
Table of Content
Week 1 ............................................................................................................................................................. 3
A ................................................................................................................................................................... 3
Lecture 1 Data pre-treatment – Initial analysis and preparation of ‘omics’ data ............................. 3
Statistical Errors - paper ......................................................................................................................... 11
R Tutorial and practical ........................................................................................................................... 13
B ................................................................................................................................................................. 17
Lecture 2 Principal Component Analysis......................................................................................... 17
Principal Component Analysis – Bro et al. .............................................................................................. 21
R practical ............................................................................................................................................... 22
C ................................................................................................................................................................. 26
Lecture 3 Clustering methods and Self Organising Maps (SOM)..................................................... 26
Self Organising Maps – Brereton ............................................................................................................ 31
R practical ............................................................................................................................................... 32
Week 2 ........................................................................................................................................................... 33
D ................................................................................................................................................................. 33
Lecture 4 BDA classification methods - supervised approach ....................................................... 33
R practical ............................................................................................................................................... 38
Week 3 ........................................................................................................................................................... 42
E ................................................................................................................................................................. 42
Lecture 5 ANOVA-Simultaneous Component Analysis – ASCA ....................................................... 42
ASCA – Smilde et.al................................................................................................................................. 45
R practical ............................................................................................................................................... 46
F.................................................................................................................................................................. 49
Lecture 6 Statistical Validation and Biomarker Selection ............................................................... 49
Smit ACA 2007 – paper ........................................................................................................................... 55
PLSDA cross validation – Johan et.al....................................................................................................... 55
R practical ............................................................................................................................................... 56
G ................................................................................................................................................................. 60
Lecture 7 Metabolic Network Inference ......................................................................................... 60
R practical ............................................................................................................................................... 64
Week 3 ........................................................................................................................................................... 66
H ................................................................................................................................................................. 66
Lecture 8 Microbiome data analysis ............................................................................................... 66

1

,Normalizing Microbiome Data – McKnight et.al..................................................................................... 72
R practical ............................................................................................................................................... 73




2

,Week 1
A
Pre-processing and pre-treatment of data is an important aspect of data analysis to remove instrumental
artefacts and add biological content to the data. One of the problems in Next Generation Sequencing
methods is the nonconstant variability in the data. Besides the variance stabilization approach we will also
discuss the meaning of the p-value and the false discovery rate. Read the Nuzzo paper for preparation and
make the questions in the Discussion_Nuzzo2014 pdf.

Web-lecture link: https://webcolleges.uva.nl/Mediasite/Play/0c3570ffed5b4f1ca3701fbdc2d591191d


Lecture 1 Data pre-treatment – Initial analysis and preparation of ‘omics’ data
Goals of the lecture:
- Learn the role of the chain of experimental techniques that determine data quality (e.g.: RNAseq)
- Learn techniques to explore the variation of omics data (bias and random effects)
- Learn techniques to normalize data (remove bias)
- Learn data transformations to remove heteroscedasticity (unequal random error)
- Know the consequences of random error for subsequent statistical analysis
- Learn the ideas behind Multiple Hypothesis Testing

The techniques mentioned above are part of the computer practicals: i.e. the topics treated in the practical
are subject of the exam.

Multiplex: quantification of a large number of (related) components in a single sample (such as omics).
VS
High throughput technologies: quantification of single component in a large number of samples (in a short
time, so not omics) .

Omics experiment is really low throughput, because lots of data takes lots of processing.

Multiplex technologies in biology:
Genomics reading multiple gene sequences in a single sample.
Transcriptomics: quantification of multiple transcript levels (mRNA) in a sample.
Proteomics: quantification & characterization of multiple proteins in a sample.
Metabolomics: quantification of many metabolites in a sample.

RNA-seq: do transcriptomics but in a way in which you sequence each transcript.
RNA-sequencing experimental procedure:
- Stopping all activity = quenching (because concentrations deviate very quick, otherwise noise)
- Isolation of mRNA (isolate out of the cells)
- Reverse transcription: RNA → DNA (because we cannot sequence RNA, thus use DNA)
- Optional amplification by PCR (polymerase chain reaction, create many DNA sequences)
- Library construction : attaching sequence tags/adaptors (to later trace the sequence)
- Sequencing

The experimental procedures affect the outcome:

Quenching because
- RNA’s have short half-lives in living cells.
- RNAses are abundant and have to be stopped
- Handling living cells cause stress which can change gene expression.
- Breaking cells (or bacteria) can be difficult
- Obtaining sample can be time-consuming.

3

, RNA isolation:
- Most RNA is ribosomal RNA (rRNA)
- Eukaryotic messenger RNA (mRNA) can be enriched by poly-A tail hybridization

Sample storage & quality control →
- Storage of mRNA should be done at – 80 ˚C.
- Quality control: 18S/28S rRNA ratio is
measured:

You see how quick mRNA is degraded in the image:
The long mRNA’s become shorter == degraded.

Sequencing and mapping sequences procedure >>

Results: a table of counts. Counts are number of
sequences mapped to a gene.




5 samples taken (A1 – B2) and x genes measured ^
You see large variation when adding all: total is not
equal for all A or all B conditions. This bias should be
removed.

The goal: detect differences in gene expression
between conditions.

Sources of variation
Technical sources (most can be removed) Biological sources
- Sample preparation (medium, temp) - Variation of interest
- Sample isolation (handling, speed of quenching…) - Variation between similar samples /
- Differences in mRNA quality individuals (can be noise but also interesting)
- cDNA synthesis
- Amount of cDNA added
- Sequence bias
- Random measurement error (only error that can’t be removed)




4

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
4 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
lenie22 Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
72
Lid sinds
5 jaar
Aantal volgers
45
Documenten
14
Laatst verkocht
1 dag geleden

4,1

7 beoordelingen

5
3
4
2
3
2
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen