100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Modelling Computing Systems Extra notities H1 / H2 Faron Moller & Georg Struth

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
25-01-2021
Geschreven in
2020/2021

Logic for Computer Science / Logica voor computertechnolgie. Samenvatting van de gegeven notites van de docent hoofdstuk 1 & deel hoofdstuk 2. Deze stof wordt naast het boek Modelling Computing Systems getoetst voor het examen. Gegeven op Universiteit Utrecht.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
25 januari 2021
Aantal pagina's
6
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Notes Hoofdstuk 1 & deel Hoofdstuk 2

Hoofdstuk 1:

Given a formula in propositional logic p, we can check when p holds for all possible values of its
atomic propositional variables that occur in that formula whether the formule holds under a certain
assignment of false and true– this is what we do when we write a truth table.

We can also give a ‘proof sketch’ using proof strategies – but we haven’t made precise what these
strategies are, relying on an informal diagrammatic description. Can we define a set of all proofs of
some propositional logic formula? After all, we managed to define the syntax of propositional logic
as inductively defined set – can we do the same for its semantics?

We can define the syntax of propositional logic using BNF, we have different way to build a
propositional formula as follows:

p, q ::= true | false | P | ¬p | p ∧ q | p ∨ q | p ⇒ q | p ⇔ q



So far, we have seen the BNF notation for inductively defined sets. But what notation should we use
for inductively defined relations? For example, we defined the ⩽ relation between Peano natural
numbers using the following rules:

− for all n ∈ N, 0 ⩽ n;
− if n ⩽ m, then s(n) ⩽ s(m)

Inductively defined relations are often given by means of inference rules:

Here we have two inference rules, named Base and Step; these rules together
define a relation (⩽) ⊆ N × N. The statements above the horizontal line are the
premises - the assumptions that you must establish in order to use this rule; the
statement under the horizontal line is the conclusion that you can draw from
these assumptions.



These rules state that there are two ways to prove that n ⩽ m:

− if n = 0 the ⩽-Base rule tells us that 0 ⩽ n – for any n;
− if we can show n ⩽ m, we can use the ⩽-Step rule to prove s(n) ⩽ s(m).

A rule without premises is called an axiom.



Example:
By repeatedly applying these rules, we can write larger proofs.
For example, to give a formal proof that 2 ⩽ 5 we write:

We can read these rules top-to-bottom or bottom-to-top. Such a
proof is sometimes referred to a as derivation. Each of the
inference rules gives a different ‘lego piece’ that we can use to
write bigger proofs.

, Example of even numbers: We can use this inference rule notation to write all
kinds of relations. For example, we may want to define the unary relation
isEven – that proves that a given number is even.




Example of isSorted array: Similarly, we can define inference rules that
make precise when a list of numbers is sorted. Note that we can require
more than one hypothesis – as in the isSorted-Step rule.




A word over an alphabet Σ is called a palindrome if it reads the
same backward as forward. Examples include: ‘racecar’, ‘radar’, or
‘madam’. Give a inference rules that characterise a unary relation
on words, capturing the fact that they are a palindrome.




Hoofdstuk 2 Natural Deduction
Given the following set of propositional logical formulas over a set of atomic variables P: p, q ::= true
| false | P | ¬p | p ∧ q | p ∨ q | p ⇒ q | p ⇔ q Can we give inference rules that capture precisely the
tautologies? Yes! These inference rules, sometimes called natural deduction, formalize the proof
strategies that we have seen previously.



Conjunction introduction and elimination
Conjunction introduction:
The proof strategy for conjunction introduction
and the inference rule for conjunction
introduction.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
luukvaa Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
760
Lid sinds
7 jaar
Aantal volgers
589
Documenten
12
Laatst verkocht
1 week geleden

Welkom op mijn stuvia pagina! Kijk gerust rond welke samenvattingen op dit moment op mijn pagina staan. Gedurende elk jaar zullen er weer nieuwe samenvattingen verschijnen, dus neem af en toe een kijkje en klik op het knopje \'\'volgen\". Succes met studeren!

4,0

284 beoordelingen

5
108
4
102
3
58
2
5
1
11

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen