100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary OCR MEI Mathematics: Year 1 (AS) Pure - Coordinate Geometry Cheat Sheet

Beoordeling
5,0
(1)
Verkocht
-
Pagina's
2
Geüpload op
22-01-2021
Geschreven in
2020/2021

This document briefly summarises the 'Coordinate Geometry' topic of the Year 1 (AS) Pure section of the OCR MEI Mathematics A Level Course.

Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Study Level
Publisher
Subject
Course

Documentinformatie

Geüpload op
22 januari 2021
Aantal pagina's
2
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Coordinate Geometry
Gradients, Distances and Midpoints
● Gradients of lines can be found by dividing the change in y by the change
in x
● Parallel lines have equal gradients, perpendicular lines have negative
reciprocal gradients (e.g 2 and -½)
● The midpoint of a line segment can be found by using the formula:
x1 + x2 y 1 + y 2
M idpoint = ( 2 , 2 )
● The length of a line segment can be found by using pythagoras’ theorem:

Length =
√(x 1 − x2 )2 + (y 1 − y 2 )2


The Equation of a Straight Line
● Often in the form y = mx + c
● m is the gradient, c is the y-intercept
● If asked to give the equation of a line from given information, calculate the
gradient and y-intercept and the equation will be in the above form using
these two terms
● Occasionally you will only get the gradient and the coordinates of a single
point or two coordinates
● In this instance, use the equation y − y 1 = m(x − x1 )
● This is useful as you only need to know the gradient - you do not need to
calculate the y-intercept


The Intersection of Two Lines
● Point of intersection of two lines is found by solving the equations of the two
lines simultaneously
● This can give either the x or the y coordinate of the P.O.I
● To find the remaining coordinate, plug the coordinate you found into the
equation of either line


The Equation of a Circle
2 2
● The general form for the equation of a circle is (x − a) + (y − b) = r2
● The radius of the circle is r
● The coordinates of the centre of the circle are (a, b)

Finding the Equation of a Circle
● You can find the radius of a circle by calculating the distance between the
centre of the circle and a point on the circumference
● To find the centrepoint from three points on the circumference:
○ Find the bisectors of two of the lines joining two of the points
○ The centrepoint is the point of intersection of the two bisectors
€3,53
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
JodbyBerundi Dr Challoner\'s Grammar School
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
37
Lid sinds
4 jaar
Aantal volgers
14
Documenten
33
Laatst verkocht
2 weken geleden

4,8

23 beoordelingen

5
19
4
4
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen