100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Research Methods - Data Analysis I

Beoordeling
-
Verkocht
-
Pagina's
5
Geüpload op
21-01-2021
Geschreven in
2020/2021

Summary of 5 pages for the course Research Methods In Psychology at UT










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 januari 2021
Aantal pagina's
5
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

RM | Unit 130 - Covariance, Correlation, and R-squared


Book: Analysing Data Using Linear Models
Chapter 4: 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14


Chapter 4.8: Pearson correlation
We see that the regression line describes data set A very well (left panel): the observed dots are very close
to the line, which means that the residuals are very small. The regression line does a worse job for data set
B (right panel) since there are quite large discrepancies between
the observed Y -values and the predicted Y -values. Put
differently, the regression equation can be used to predict Y -
values in data set A very well, almost without error, whereas the
regression line cannot be used to predict Y -values in data set B
very precisely. The regression line is also the least squares
regression line for data set B, so any improvement by choosing
another slope or intercept is not possible.
In order to get to Pearson’s correlation coefficient, you first need to standardise both
the independent variable, X, and the dependent variable, Y. You standardise scores
by taking their values, subtract the mean from them, and divide by the standard
deviation. So, in order to obtain a standardised value for X = x we compute zX, zX =
x − X σX (4.15) and in order to obtain a standardised value for Y = y we compute zY
, zY = y − Y σY.
the slopes are different: in data set A, the slope is 0.997 and in data set B, the slope is
0.376. ZY = 0 + 0.997 × ZX = 0.997 × ZX (4.17) ZY = 0 + 0.376 × ZX = 0.376 × ZX (4.18) These two
slopes, the slope for the regression of standardized Y -values on standardized X-values, are the correlation
coefficients for data sets A and B, respectively. For obvious reasons, the correlation is sometimes also
referred to as the standardised slope coefficient or standardised regression coefficient.
→ The correlation is bidirectional: the correlation between Y and X is the same as the correlation
between X and Y.
In summary, the correlation coefficient indicates how well one variable can be predicted
from the other variable. It is the slope of the regression line if both variables are standardised. If
prediction is not possible (when the regression slope is 0), the correlation is 0, too. If the prediction is
perfect, without errors (no residuals) and with a slope unequal to 0, then the correlation is either -1 or +1,

, depending on the sign of the slope. The correlation coefficient between variables X and Y is usually
denoted by rXY for the sample correlation and ρXY (pronounced ’rho’) for the population correlation.
Chapter 4.9: Covariance
Through the division of X and Y -values by their respective standard deviation. There exists also an
unstandardised measure for how much two variables co-relate: the covariance. The correlation ρXY is
the slope when X and Y each have variance 1. When you multiply correlation ρXY by a quantity
indicating the variation of the two variables, you get the covariance. This quantity is the product of the
two respective standard deviations. The covariance between variables X and Y , denoted by σXY , can be
computed as: σXY = ρXY × σX × σY (4.19)
For example, if the variance of X equals 49 and the variance of Y equals 25, then the respective
standard deviations are 7 and 5. If the correlation between X and Y equals 0.5, then the covariance
between X and Y is equal to 0.5 × 7 × 5 = 17.5.
Similar to the correlation, the covariance of

two variables indicates by how much they co-vary.

For instance, if the variance of X is 3 and the

variance of Y is 5, then a covariance of 2 indicates

that X and Y co-vary: if X increases by a certain

amount, Y also increases. If you want to know how

many standard deviations Y increases if X increases

with one standard deviation, you can turn the

covariance into a correlation by dividing the

covariance by the respective standard deviations.

ρXY = σXY σXσY = 2 √ 3 √ 5 = 0.52. Similar to

correlations and slopes, covariances can also be

negative. Instead of computing the covariance on

the basis of the correlation, you can also compute

the covariance using the data directly. The formula

for the covariance is σXY = P(Xi − X)(Yi − Y ) n)

126, so it is the mean of the squared cross-products

of two variables.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
kayleighdebruin1 Hogeschool Arnhem en Nijmegen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
43
Lid sinds
7 jaar
Aantal volgers
25
Documenten
46
Laatst verkocht
7 maanden geleden

5,0

3 beoordelingen

5
3
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen