100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solution Manual for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman

Beoordeling
-
Verkocht
-
Pagina's
86
Cijfer
A+
Geüpload op
03-11-2025
Geschreven in
2025/2026

Solution Manual for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman

Instelling
Applied Partial Differential Equations
Vak
Applied Partial Differential Equations











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Applied Partial Differential Equations
Vak
Applied Partial Differential Equations

Documentinformatie

Geüpload op
3 november 2025
Aantal pagina's
86
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Applied Partial Differential Equations with
Fourier Series and Boundary Value Problems –
ST

5th Edition
UV

SOLUTION
IA
_A

MANUAL
PP
RO
Richard Haberman
VE
Comprehensive Solutions Manual for Instructors
D?
and Students

© Richard Haberman
??
All rights reserved. Reproduction or distribution without permission is prohibited.




©STUDYSTREAM

, Chapter 1. Heat Equation
Section 1.2
1.2.9 (d) Circular cross section means that P = 2πr, A = πr2 , and thus P/A = 2/r, where r is the radius.
Also γ = 0.
1.2.9 (e) u(x, t) = u(t) implies that
ST
du 2h
cρ =− u.
dt r
The solution of this first-order linear differential equation with constant coefficients, which satisfies the
initial condition u(0) = u0 , is · ¸
2h
UV
u(t) = u0 exp − t .
cρr

Section 1.3
1.3.2 ∂u/∂x is continuous if K0 (x0 −) = K0 (x0 +), that is, if the conductivity is continuous.

Section 1.4
IA

1.4.1 (a) Equilibrium satisfies (1.4.14), d2 u/dx2 = 0, whose general solution is (1.4.17), u = c1 + c2 x. The
boundary condition u(0) = 0 implies c1 = 0 and u(L) = T implies c2 = T /L so that u = T x/L.
1.4.1 (d) Equilibrium satisfies (1.4.14), d2 u/dx2 = 0, whose general solution (1.4.17), u = c1 + c2 x. From
_A
the boundary conditions, u(0) = T yields T = c1 and du/dx(L) = α yields α = c2 . Thus u = T + αx.
1.4.1 (f) In equilibrium, (1.2.9) becomes d2 u/dx2 = −Q/K0 = −x2 , whose general solution (by integrating
twice) is u = −x4 /12 + c1 + c2 x. The boundary condition u(0) = T yields c1 = T , while du/dx(L) = 0
yields c2 = L3 /3. Thus u = −x4 /12 + L3 x/3 + T .
1.4.1 (h) Equilibrium satisfies d2 u/dx2 = 0. One integration yields du/dx = c2 , the second integration
PP

yields the general solution u = c1 + c2 x.
x=0: c2 − (c1 − T ) = 0
x=L: c2 = α and thus c1 = T + α.
Therefore, u = (T + α) + αx = T + α(x + 1).
RO

1.4.7 (a) For equilibrium:
d2 u x2 du
2
= −1 implies u = − + c1 x + c2 and = −x + c1 .
dx 2 dx
From the boundary conditions du du
dx (0) = 1 and dx (L) = β, c1 = 1 and −L + c1 = β which is consistent
2
only if β + L = 1. If β = 1 − L, there is an equilibrium solution (u = − x2 + x + c2 ). If β 6= 1 − L,
VE

there isn’t an equilibrium solution. The difficulty is caused by the heat flow being specified at both
ends and a source specified inside. An equilibrium will exist only if these three are in balance. This
balance can be mathematically verified from conservation of energy:
Z Z L
d L du du
cρu dx = − (0) + (L) + Q0 dx = −1 + β + L.
dt 0 dx dx
D?
0

If β + L = 1, then the total thermal energy is constant and the initial energy = the final energy:
Z L Z Lµ 2 ¶
x
f (x) dx = − + x + c2 dx, which determines c2 .
0 0 2

If β + L 6= 1, then the total thermal energy is always changing in time and an equilibrium is never
??

reached.

1

, Section 1.5
d
¡ du ¢
1.5.9 (a) In equilibrium, (1.5.14) using (1.5.19) becomes dr r dr = 0. Integrating once yields rdu/dr = c1
and integrating a second time (after dividing by r) yields u = c1 ln r + c2 . An alternate general solution
is u = c1 ln(r/r1 ) + c3 . The boundary condition u(r1 ) = T1 yields c3 = T1 , while u(r2 ) = T2 yields
c1 = (T2 − T1 )/ ln(r2 /r1 ). Thus, u = ln(r21/r1 ) [(T2 − T1 ) ln r/r1 + T1 ln(r2 /r1 )].
ST
1.5.11 For equilibrium, the radial flow at r = a, 2πaβ, must equal the radial flow at r = b, 2πb. Thus β = b/a.
d
¡ 2 du ¢
1.5.13 From exercise 1.5.12, in equilibrium dr r dr = 0. Integrating once yields r2 du/dr = c1 and integrat-
2
ing a second time (after dividing by r ) yields u = −c1 /r + c2 . The boundary conditions ¡ u(4) ¢ = 80
and u(1) = 0 yields 80 = −c1 /4 + c2 and 0 = −c1 + c2 . Thus c1 = c2 = 320/3 or u = 320 3 1 − 1r .
UV
IA
_A
PP
RO
VE
D?
??

2

, Chapter 2. Method of Separation of Variables
Section 2.3
³ ´ ³ ´

2.3.1 (a) u(r, t) = φ(r)h(t) yields φ dh = kh d
r dr . Dividing by kφh yields
1 dh
= 1 d
r dφ = −λ or
³ ´ dt r dr kh dt rφ dr dr
dh 1 d dφ
dt = −λkh and r dr r dr = −λφ.
ST
2 2 2 2
2.3.1 (c) u(x, y) = φ(x)h(y) yields h ddxφ2 + φ ddyh2 = 0. Dividing by φh yields 1 d φ
φ dx2 = − h1 ddyh2 = −λ or
d2 φ d2 h
dx2 = −λφ and dy 2 = λh.
4 4
d φ 1 d φ
2.3.1 (e) u(x, t) = φ(x)h(t) yields φ(x) dh
dt = kh(t) dx4 . Dividing by kφh, yields
1 dh
kh dt = φ dx4 = λ.
UV

2 2 2
1 d2 h
2.3.1 (f) u(x, t) = φ(x)h(t) yields φ(x) ddt2h = c2 h(t) ddxφ2 . Dividing by c2 φh, yields c2 h dt2 = 1 d φ
φ dx2 = −λ.

2.3.2 (b) λ = (nπ/L)2 with L = 1 so that λ = n2 π 2 , n = 1, 2, . . .

2.3.2 (d)
√ √ dφ
(i) If λ > 0, φ = c1 cos λx + c2 sin λx. φ(0) = 0 implies c1 = 0, while dx (L) = 0 implies
IA
√ √ √
c2 λ cos λL = 0. Thus λL = −π/2 + nπ(n = 1, 2, . . .).
(ii) If λ = 0, φ = c1 + c2 x. φ(0) = 0 implies c1 = 0 and dφ/dx(L) = 0 implies c2 = 0. Therefore λ = 0
is not an eigenvalue.
√ √
(iii) If λ < 0, let
√ λ = −s√ and φ = c1 cosh sx + c2 sinh sx. φ(0) = 0 implies c1 = 0 and dφ/dx(L) = 0
_A

implies c2 s cosh sL = 0. Thus c2 = 0 and hence there are no eigenvalues with λ < 0.
2.3.2 (f) The simpliest method is to let x0 = x − a. Then d2 φ/dx02 + λφ = 0 with φ(0) = 0 and φ(b − a) = 0.
2
Thus (from p. 46) L = b − a and λ = [nπ/(b − a)] , n = 1, 2, . . ..
P∞ −k(nπ/L)2 t
2.3.3 From (2.3.30), u(x, t) = n=1 Bn sin nπxL e . The initial condition yields
PP
P∞ 2 L
R
nπx
2 cos L = n=1 Bn sin L . From (2.3.35), Bn = L 0 2 cos 3πx
3πx nπx
L sin L dx.
RL P∞ 2
Bn e−k( )

t 1−cos nπ
2.3.4 (a) Total heat energy = 0
cρuA dx = cρA n=1
L
nπ , using (2.3.30) where Bn
L
satisfies (2.3.35).
RO
2.3.4 (b)
heat flux to right = −K0 ∂u/∂x
total heat flow to right = −K0 A∂u/∂x
¯
heat flow out at x = 0 = K0 A ∂u ¯
¯
∂x x=0
∂u ¯
heat flow out (x = L) = −K0 A ∂x x=L
RL ¯L
d ¯
2.3.4 (c) From conservation of thermal energy, dt u dx = k ∂u ∂u ∂u
∂x ¯ = k ∂x (L) − k ∂x (0). Integrating from
VE
0 0
t = 0 yields
Z L Z L Z t· ¸
∂u ∂u
u(x, t) dx − u(x, 0) dx = k (L) − (0) dx .
∂x ∂x
|0 {z } |0 {z } | 0 {z } | {z }
heat energy initial heat integral of integral of
D?
at t energy flow in at flow out at
x=L x=L
2 p p
2.3.8 (a) The general solution of k ddxu2 = αu (α > 0) is u(x) = a cosh αk x + b sinh αk x. The boundary
condition u(0) = 0 yields a = 0, while u(L) = 0 yields b = 0. Thus u = 0.
??

3

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
StudyStream Howard Community College
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
86
Lid sinds
1 jaar
Aantal volgers
30
Documenten
1234
Laatst verkocht
1 dag geleden
StudySteam - Verified Solutions, Test Banks &amp; Guides for Medical, Nursing, Business, Engineering, Accounting, Chemistry, Biology &amp; Other Subjects

Welcome to Your Exam Success Headquarters! Tired of endless textbook reading? Our shop is your go-to for high-quality, exam-ready study materials designed for university and college students. We specialize in original publisher content, including solutions manuals, test banks, and comprehensive study guides across a wide range of subjects. Every document is an instant PDF download – no waiting, no fuss! Get immediate access to top-tier academic resources like step-by-step solutions and real test formats to truly ace your coursework and exams. Our materials are perfect for exam preparation, offering insights and practice for every study style. Ready to boost your grades? Dive in and discover your next A+ resource. Found something great? Share our shop with your classmates – let's achieve success together!

Lees meer Lees minder
4,1

9 beoordelingen

5
5
4
2
3
1
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen