100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

A Complete Solution Guide to Principles of Mathematical Analysis (2025/2026 Edition)

Beoordeling
-
Verkocht
-
Pagina's
413
Cijfer
A+
Geüpload op
29-10-2025
Geschreven in
2025/2026

This document is a fully worked, step-by-step solution manual to the classic textbook Principles of Mathematical Analysis by Walter Rudin, based on the Guide by Kit-Wing Yu. It covers all 285 exercises from Rudin’s text with detailed explanations, supplemental lemmas, illustrative figures, and additional commentary to enhance clarity. Ideal for undergraduate and graduate students, instructors, and self-learners who wish to deepen their understanding of real analysis through worked examples. Key features include: Complete proofs for every exercise, showing each intermediate step and theorem used Additional lemmas and remarks where Rudin’s statements require background Illustrations and explanatory tables to clarify difficult concepts Structured sections to improve readability and pedagogical flow Use this guide as a companion to Rudin’s Principles of Mathematical Analysis to check your own solutions, find alternate approaches, or as a teaching aid.

Meer zien Lees minder
Instelling
Foundations Of Real Analysis
Vak
Foundations of Real Analysis











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Foundations of Real Analysis
Vak
Foundations of Real Analysis

Documentinformatie

Geüpload op
29 oktober 2025
Aantal pagina's
413
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Covers All 11 Chapters

,List of Figures


2.1 The neighborhoods Nh(q) and Nr(p) ................................................................................................... 13
2.2 Convex sets and nonconvex sets ........................................................................................................ 23
2.3 The sets Nh(x ), N
2
h (x ) and Nq m (x k) ............................................................................................... 25

2.4 The construction of the shrinking sequence ................................................................................... 29

3.1 The Cantor set.......................................................................................................................................... 49

4.1 The graph of g on [an, bn]. ...................................................................................................................... 59
4.2 The sets E and Ini .................................................................................................................................. 63
4.3 The graphs of [x] and√(x)....................................................................................................................... 70
4.4 An example for α = 2 and n = 5........................................................................................................ 72
4.5 The distance from x ∈ X to E.............................................................................................................. 74
4.6 The graph of a convex function f ....................................................................................................... 76
4.7 The positions of the points p, p + κ, q — κ and q............................................................................ 77

5.1 The zig-zag path of the process in (c)............................................................................................. 105
5.2 The zig-zag path induced by the function f in Case (i) ....................................................... 108
5.3 The zig-zag path induced by the function g in Case (i) ........................................................ 109
5.4 The zig-zag path induced by the function f in Case (ii)...................................................... 109
5.5 The zig-zag path induced by the function g in Case (ii) ........................................................ 110
5.6 The geometrical interpretation of Newton’s method ...................................................................... 111

8.1 The graph of the continuous function y = f (x) = (π — |x|)2 on [—π, π]. ................................ 186
8.2 The graphs of the two functions f and g ....................................................................................... 197
8.3 A geometric proof of 0 < sin x ≤ x on (0 2
, π ]. ................................................................................ 199
8.4 The graph of y = | sin x| ......................................................................................................................... 199
8.5 The winding number of γ around an arbitrary point p............................................................. 202
8.6 The geometry of the points z, f (z) and g(z) ................................................................................ 209

9.1 An example of the range K of f ........................................................................................................ 219
9.2 The set of q ∈ K such that (∇f3)(f—1(q)) = 0 .............................................................................. 220
9.3 Geometric meaning of the implicit function theorem ................................................................. 232
9.4 The graphs around the four points................................................................................................... 233
9.5 The graphs around (0, 0) and (1, 0) ................................................................................................. 236
9.6 The graph of the ellipse X2 + 4Y 2 = 1.......................................................................................... 239
9.7 The definition of the function ϕ(x, t) ................................................................................................ 243
9.8 The four regions divided by the two lines αx1 + βx2 = 0 and αx1 — βx2 = 0.................... 252

10.1 The compact convex set H and its boundary ∂H....................................................................... 256
10.2 The figures of the sets Ui, Wi and Vi ....................................................................................................................................... 264
10.3 The mapping T : I2 → H ...................................................................................................................... 269
10.4 The mapping T : A → D ....................................................................................................................... 270
10.5 The mapping T : A◦ → D0......................................................................................................................................................................... 271
10.6 The mapping T : S → Q ....................................................................................................................... 277

vii

,List of Figures viii

10.7 The open sets Q0.1, Q0.2 and Q ........................................................................................................... 278
10.8 The mapping T : I3 → Q3. ..................................................................................................................... 280
10.9 The mapping τ1 : Q2→ I2 ......................................................................................................................................................................... 288
10.10 The mapping τ2 : Q2→ I2 ......................................................................................................................................................................... 289
10.11 The mapping τ2 : Q2→ I2 ......................................................................................................................................................................... 289
10.12 The mapping Φ : D→ R2 \ {0} . ........................................................................................................... 296
10.13 The spherical coordinates for the point Σ(u, v) ......................................................................... 300
10.14 The rectangles D and E ..................................................................................................................... 302
10.15 An example of the 2-surface S and its boundary ∂S.............................................................. 304
10.16 The unit disk U as the projection of the unit ball V.................................................................. 325
10.17 The open cells U and V ........................................................................................................................ 326
10.18 The parameter domain D ..................................................................................................................... 332
10.19 The figure of the Möbius band ............................................................................................................ 333
10.20 The “geometric” boundary of M ......................................................................................................... 335

11.1 The open square Rδ((p, q)) and the neighborhood N√2δ ((p, q)) ............................................ 350

B.1 The plane angle θ measured in radians .......................................................................................... 365
B.2 The solid angle Ω measured in steradians .................................................................................... 366
B.3 A section of the cone with apex angle 2θ ...................................................................................... 366

, List of Tables


6.1 The number of intervals & end-points and the length of each interval for each En............ 121

9.1 Expressions of x around four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
points.
9.2 Expressions of y around four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
points.




ix
€17,24
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
SirMaina

Maak kennis met de verkoper

Seller avatar
SirMaina CHAMBERLAIN COLLEGE OF NURSING
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2
Lid sinds
3 maanden
Aantal volgers
1
Documenten
243
Laatst verkocht
2 weken geleden
SIR MAINA – EXAMS, TEST BANKS, SOLUTION MANUALS &amp; STUDY GUIDES ✅

Sir Maina – Exams, Test Banks, Solution Manuals &amp; Study Guides Welcome to Sir Maina’s Academic Hub, your one-stop destination for premium study materials. This page is dedicated to providing students with exams, test banks, solution manuals, eBooks, summaries, and all other academic resources designed to make learning easier and more effective.

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen