100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Advanced Linear Algebra (2016) – Solutions Manual – Cooperstein

Beoordeling
-
Verkocht
-
Pagina's
134
Cijfer
A+
Geüpload op
28-10-2025
Geschreven in
2025/2026

INSTANT PDF DOWNLOAD — Complete Solutions Manual for Advanced Linear Algebra, 2nd Edition (2016) by Cooperstein. Covers all 13 chapters with step-by-step worked solutions, proofs, and annotations: vector spaces, linear maps, matrices, rank–nullity, eigenvalues/eigenvectors, diagonalization, Jordan & rational canonical forms, minimal & characteristic polynomials, invariant subspaces, inner-product/orthogonality, Gram–Schmidt & QR, spectral theorem, bilinear & quadratic forms, and applications. Perfect for homework checking, exam prep, and self-study for upper-division/graduate linear algebra. advanced linear algebra solutions, Cooperstein solutions manual, linear algebra step by step, Jordan canonical form problems, spectral theorem exercises, eigenvalues and eigenvectors solved, diagonalization practice, Gram Schmidt QR solutions, inner product space problems, bilinear forms solutions, quadratic forms reduction, characteristic polynomial problems, minimal polynomial exercises, invariant subspace practice, rational canonical form solved, graduate linear algebra workbook, matrix theory solutions pdf, proofs in linear algebra, homework solutions upper division, self study linear algebra

Meer zien Lees minder
Instelling
Calculus
Vak
Calculus











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Calculus
Vak
Calculus

Documentinformatie

Geüpload op
28 oktober 2025
Aantal pagina's
134
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

ALL 13 CHAPTERS COVERED




SOLUTIONS MANUAL

, Contents

1 Vector Spaces 1
1.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Space Fn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Introduction to Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Subspaces of Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Span and Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Bases and Finite Dimensional Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Bases of Infinite Dimensional Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Coordinate Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Linear Transformations 17
2.1 Introduction to Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Range and Kernel of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Correspondence and Isomorphism Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Matrix of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 The Algebra of L(V, W ) and Mmn (F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Invertible Transformations and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Polynomials 29
3.1 The Algebra of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Theory of a Single Linear Operator 33
4.1 Invariant Subspaces of an Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Cyclic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Maximal Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Indecomposable Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Invariant Factors and Elementary Divisors of a Linear Operator . . . . . . . . . . . . . . . . . . . . . 38
4.6 Canonical Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7 Linear Operators on Real and Complex Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 42




K23692_SM_Cover.indd 5 02/06/

, iv CONTENTS


5 Inner Product Spaces 45
5.1 Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 The Geometry of Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Orthonormal Sets and the Gram-Schmidt Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Orthogonal Complements and Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Dual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.7 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Linear Operators on Inner Product Spaces 59
6.1 Self-Adjoint Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Spectral Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Normal Operators on Real Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Unitary and Orthogonal Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.5 Positive Operators, Polar Decomposition and Singular Value Decomposition . . . . . . . . . . . . . . 67

7 Trace and Determinant of a Linear Operator 71
7.1 Trace of a Linear Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Uniqueness of the Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Bilinear Maps and Forms 81
8.1 Basic Properties of Bilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Symplectic Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.3 Quadratic Forms and Orthogonal Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4 Orthogonal Space, Characteristic Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.5 Real Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9 Sesquilinear Forms and Unitary Spaces 93
9.1 Basic Properties of Sesquilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.2 Unitary Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10 Tensor Products 97
10.1 Introduction to Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.2 Properties of Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.3 The Tensor Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.4 The Symmetric Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.5 Exterior Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.6 Clifford Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107




K23692_SM_Cover.indd 6 02/06/

, CONTENTS v


11 Linear Groups and Groups of Isometries 109
11.1 Linear Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.2 Symplectic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.3 Orthogonal Groups, Characteristic Not Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.4 Unitary Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

12 Additional Topics 117
12.1 Operator and Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.2 Moore-Penrose Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.3 Nonnegative Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.4 Location of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.5 Functions of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

13 Applications of Linear Algebra 125
13.1 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
13.2 Error Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
13.3 Ranking Web Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129




K23692_SM_Cover.indd 7 02/06/

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
TestBanksStuvia Chamberlain College Of Nursng
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2682
Lid sinds
2 jaar
Aantal volgers
1194
Documenten
1925
Laatst verkocht
18 uur geleden
TESTBANKS & SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3,9

288 beoordelingen

5
158
4
43
3
30
2
20
1
37

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen