100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Linear Algebra: Concepts and Methods (2013) – Solutions Manual – Anthony

Beoordeling
-
Verkocht
-
Pagina's
152
Cijfer
A+
Geüpload op
28-10-2025
Geschreven in
2025/2026

INSTANT PDF DOWNLOAD — Complete step-by-step solutions for Linear Algebra: Concepts and Methods by Martin Anthony & Michele Harvey. Covers all 13 chapters: systems of linear equations, Gaussian elimination, matrices and inverses, determinants, vector spaces, subspaces, linear independence, basis & dimension, linear transformations, rank–nullity, eigenvalues/eigenvectors, diagonalization, inner-product spaces, orthogonality, Gram–Schmidt, least squares, and applications. Searchable, printable PDF with clear proofs, worked examples, and exam-ready problem solving for math, engineering, CS, data science, and economics courses. linear algebra solutions, matrix algebra workbook, gaussian elimination problems, determinants practice, vector spaces exercises, linear independence basis dimension, rank nullity theorem, linear transformations solutions, eigenvalues eigenvectors problems, diagonalization practice, orthogonality least squares, gram schmidt solutions, inner product space, systems of linear equations solved, singular value decomposition intro, spectral theorem exercises, proof based linear algebra, data science math foundations, engineering mathematics textbook help, Anthony Harvey solutions

Meer zien Lees minder
Instelling
Math
Vak
Math











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Math
Vak
Math

Documentinformatie

Geüpload op
28 oktober 2025
Aantal pagina's
152
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

ALL 13 CHAPTERS COVERED




SOLUTIONS MANUAL

,Chapter 1


Problem 1.1 (a) Ab is not defined.

(b) Since C is a 3 × 3 matrix and A is 3 × 2, the product CA is defined and is the
3 × 2 matrix
    
1 2 1 2 1 4 6
CA =  3 0 −1   1 1  =  6 0 
4 1 1 0 3 9 8


(c) A + Cb is not defined, since Cb is 3 × 1 and A is 3 × 2.
 
2 2

(d) A + D = 3 6
6 6
 
0 1
(e) bT D = ( 1 1 −1 )  2 5  = ( −4 3)
6 3

(f) The product DAT is a 3 × 3 matrix, as is C, so this expression is defined:
   
0 1 ( ) 1 1 3
2 1 0
DAT =  2 5  =  9 7 15  ,
1 1 3
6 3 15 9 9


5

,6 CHAPTER 1.
     
1 1 3 1 2 1 2 3 4
T
DA + C =  9 7  
15 + 3 0  
−1 = 12 7 14 
15 9 9 4 1 1 19 10 10

 
1
(g) bT b = ( 1 1 −1 )  1  = (3). As mentioned in Section 1.8.2, we
−1
normally just identify a 1 × 1 matrix by its entry. So we may write (3) as 3.
   
1 1 1 −1
(h) bbT =  1  ( 1 1 −1 ) =  1 1 −1 
−1 −1 −1 1
    
1 2 1 1 2

(i) Cb = 3 0 −1   1  = 4

4 1 1 −1 4

Problem 1.2 The matrix aT b is the product of a 1 × n matrix and an n × 1
matrix, so it is a 1 × 1 matrix (which can be identified with the scalar it
represents; that is, the scalar given by the inner product ⟨a, b⟩ ). The product bT a
is also a 1 × 1 matrix. Since the product aT b is a 1 × 1 matrix, it is symmetric,
so that
aT b = (aT b)T = bT a.

Problem 1.3 We have
( )( ) ( ) ( )
3 7 x y 3x + 7z 3y + 7w 1 0
= =
0 −1 z w −z −w 0 1
Hence,

3x + 7z = 1 


3y + 7w = 0  3x + 0 = 1 1 7
=⇒ =⇒ x = , y = , z = 0, w = −1
−z = 0 
 3y − 7 = 0 3 3


−w = 1
(1 7
)
Therefore B −1 = 3 3 .
0 −1

, 7

Using the method in Activity 1.24, we have
( )
−1 1 −1 −7
|B| = −3, so that B =− ,
3 0 3
which, of course, agrees with the previous result for B −1 .

You can now check that this is indeed B −1 by multiplying out BB −1 and B −1 B
to obtain the identity matrix.

Problem 1.4 To obtain A, you can first take the transpose of both sides of the
equation ( )
−1 T 3 5
(A ) =
1 2
to obtain ( )
−1 3 1
A = .
5 2
Now A = (A−1 )−1 , so we need the inverse of the above matrix. This can be
found using the method given in Activity 1.24. You should obtain
( )
2 −1
A= .
−5 3

Problem 1.5 Since A is symmetric, we have aij = aji , and since B is
skew-symmetric we must have bij = −bji . Then the matrices are
   
1 −4 7 0 −3 5
A =  −4 6 0  B= 3 0 2.
7 0 2 −5 −2 0

Problem 1.6 Since (A + AT )T = AT + A = A + AT , the matrix A + AT is
symmetric. Similarly, (A − AT )T = AT − A = −(A − AT ), so this matrix is
skew symmetric.

Adding the matrices A + AT and A − AT we obtain 2A, so we can write
1 1
A = (A + AT ) + (A − AT ),
2 2
which is the sum of a symmetric and a skew-symmetric matrix.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
TestBanksStuvia Chamberlain College Of Nursng
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2676
Lid sinds
2 jaar
Aantal volgers
1194
Documenten
1925
Laatst verkocht
14 uur geleden
TESTBANKS & SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3,9

288 beoordelingen

5
158
4
43
3
30
2
20
1
37

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen