100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Beoordeling
-
Verkocht
-
Pagina's
1024
Cijfer
A+
Geüpload op
13-10-2025
Geschreven in
2025/2026

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Instelling
SM+TB
Vak
SM+TB











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
SM+TB
Vak
SM+TB

Documentinformatie

Geüpload op
13 oktober 2025
Aantal pagina's
1024
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

A First Course in Differential
qy qy qy qy qy




Equations with Modeling Ap qy qy qy




plications, 12th Edition by De qy qy qy qy




nnis G. Zill qy qy




Complete Chapter Solutions Manual ar
qy qy qy qy




e included (Ch 1 to 9)
qy qy qy qy qy




** Immediate Download
qy qy




** Swift Response
qy qy




** All Chapters included
qy qy qy

,SolutionqyandqyAnswerqyGuide:qyZill,qyDIFFERENTIALqyEQUATIONSqyWithqyMODELINGqyAPPLICATIONSqy2024,qy9780357760192; qyChapterq
y#1:




Solution and Answer Guide qy qy qy




ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
qy qy qy qy qy qy qy


9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS qy qy qy qy qy qy




TABLE OF CONTENTS QY QY




End of Section Solutions .................................................................................................................................... 1
qy qy qy



Exercises 1.1 ........................................................................................................................................................ 1
qy



Exercises 1.2 ......................................................................................................................................................14
qy



Exercises 1.3 ......................................................................................................................................................22
qy



Chapter 1 in Review Solutions ..................................................................................................................... 30
qy qy qy qy




END OF SECTION SOLUTIONS
QY QY QY




EXERCISES 1.1 QY




1. Second order; linear q y q y


4
2. Third order; nonlinear because of (dy/dx)
qy qy qy qy qy



3. Fourth order; linear qy qy



4. Second order; nonlinear because of cos(r + u)
qy qy qy qy qy qy qy


5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
qy qy qy qy qy qy qy qy

2
6. Second order; nonlinear because of R
qy qy qy qy qy



7. Third order; linear qy qy


2
8. Second order; nonlinear because of ẋ
qy qy qy qy qy



9. First order; nonlinear because of sin (dy/dx)
qy qy qy qy qy qy



10. First order; linear qy qy


2
11. Writing the differential equation in the form x(dy/dx) + y = 1, we see that it is nonli
qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy


near in y because of y . However, writing it in the form (y —
2 2
qy qy qy qy qy qy qy qy qy qy qy qy qy


1)(dx/dy) + x = 0, we see that it is linear in x.
qy qy qy qy qy qy qy qy qy qy qy qy qy


u
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ue we see that
qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy


it is linear in v. However, writing it in the form (v + uv —
qy qy qy qy qy qy qy qy qy qy qy qy qy qy


ueu)(du/dv) + u = 0, we see that it is nonlinear in u.
qy qy qy qy qy qy qy qy qy qy qy qy qy



Fromqyyqy=qye− qyweqyobtainqyyjqy=qy—qy1qye− .qyThenqy2yjqy+qyyqy=qy—e− qy+qye− qy=qy0.
x/2 x/2 x/2 x/2
13. 2

,SolutionqyandqyAnswerqyGuide:qyZill,qyDIFFERENTIALqyEQUATIONSqyWithqyMODELINGqyAPPLICATIONSqy2024,qy9780357760192; qyChapterq
y#1:




6 6 —
14. From y = qy qy — e we obtain dy/dt = 24e
qy qy qy qy , so that
qy qy

5 5
qyqy
dy −20t 6 6 qy

— −20t
5 qy

e
3x
15. From y = e cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—
qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy


12e sin 2x, so that yjj — 6yj + 13y = 0.
3x
qy qy qy qy qy qy qy qy qy qy qy

j
16. From y = — qy qy qy = —1 + sin x ln(sec x + tan x) and
qy qy qy qy qy qy qy qy qy qy

cos x ln(sec x + tan x) we obtain y
qy qy qy qy qy qy qy qy qy qy

jj
y q y = tan x + cos x ln(sec x + tan x). Then y
qy qy qy qy qy qy qy qy qy qy qy qy q y + y = tan x.
qy qy qy qy



17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−
1/2
qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy


we have qy



j −
—x)y = (y — x)[1 + (2(x + 2) ]
q y qy qy qy qy qy qy qy




−1/2
= y — x + 2(y —
qy qy qy qy qy qy




−1/2
= y — x + 2[x + 4(x + 2)1/2 —
qy qy qy qy qy qy qy qy qy qy




= y — x + 8(x + 2)1/2
qy qy qy qy qy qy qy
−1/2q y =qyyq y — qyxqy+qy8.


An interval of definition for the solution of the differential equation is (—
qy qy qy qy qy qy qy qy qy qy qy qy


2, ∞) because yj is not defined at x = —2.
qy qy qy qy qy qy qy qy qy qy



18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy q y q y qy qy qy


{x q y q y 5x /= π/2 + nπ}
qy qy qy qy



or {x qy
q y
x /= π/10 + nπ/5}. From j y = 25 sec
qy qy
2 5x we haveqy qy qy qy q y qy qy q y qy qy




2 2 2
y .

An interval of definition for the solution of the differential equation is (—
qy qy qy qy qy qy qy qy qy qy qy qy


π/10, π/10). An- other interval is (π/10, 3π/10), and so on.
qy qy qy qy qy qy qy qy qy qy



19. The domain of the function is {x
qy 4— x qy qy qy qy qy qy qy /= 0} or {x
q y qy qy x /= —
q y q y


2 or x /= 2}. From y = 2x/(4 — x2)2 we have
qy qy q y q y qy qy q y qy qy qy qy qy


q y q y 1
yj = 2xqy qy q y = 2xy2. qy
2

4 — x2qy qy



An interval of definition for the solution of the differential equation is (—
qy qy qy qy qy qy qy qy qy qy qy qy


2, 2). Other inter- vals are (—∞, —2) and (2, ∞).
qy qy qy qy qy qy qy qy qy qy


20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy


Thus, the domain is {x x /= π/2 + 2nπ}. From y = 2— (1 — sin x) (— cos x) we have
qy qy qy qy q y qy qy qy qy qy qy qy qy q y qy qy qy qy qy qy qy




2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.
qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy qy




An interval of definition for the solution of the differential equation is (π/2, 5π/2). Anoth
qy qy qy qy qy qy qy qy qy qy qy qy qy qy

, SolutionqyandqyAnswerqyGuide:qyZill,qyDIFFERENTIALqyEQUATIONSqyWithqyMODELINGqyAPPLICATIONSqy2024,qy9780357760192; qyChapterq
y#1:
erqyoneqyisqy(5π/2,qy9π/2),qyandqysoqyon.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
SuperExam Harvard University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
24
Lid sinds
2 maanden
Aantal volgers
1
Documenten
531
Laatst verkocht
1 week geleden

4,0

5 beoordelingen

5
2
4
1
3
2
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen