100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

Using Triangle Congruence Theorems Exam Questions And Answers Verified 100% Correct

Beoordeling
-
Verkocht
-
Pagina's
3
Cijfer
A+
Geüpload op
09-10-2025
Geschreven in
2025/2026

Using Triangle Congruence Theorems Exam Questions And Answers Verified 100% Correct Two angles and the non-included side of one triangle are congruent to the corresponding parts of another triangle. Which congruence theorem can be used to prove that the triangles are congruent? - ANSWER B. AAS Two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle. Which congruence theorem can be used to prove that the triangles are congruent? - ANSWER C. SAS Given: ∠GHD and ∠EDH are right; GH ≅ ED. Which relationship in the diagram is true? - ANSWER A. △GHD ≅ △EDH by SAS Which congruence theorem can be used to prove △WXZ ≅ △YZX? - ANSWER A. AAS Which congruence theorem can be used to prove △BDA ≅ △BDC? - ANSWER A. HL Given: ∠BCD is right; BC ≅ DC; DF ≅ BF; FA ≅ FE. Which relationships in the diagram are true? Check all that apply. - ANSWER 2. △CBF ≅ △CDF by SSS 3. △BFA ≅ △DFE by SAS 5. △CBE ≅ △CDA by HL Line segments AD and BE intersect at C, and triangles ABC and DEC are formed. They have the following characteristics: ∠ACB and ∠DCE are vertical angles ∠B ≅ ∠E BC ≅ EC Which congruence theorem can be used to prove △ABC ≅ △DEC? - ANSWER B. ASA Consider the diagram. The congruence theorem that can be used to prove △LON ≅ △LMN is - ANSWER A. SSS. Which congruency theorem can be used to prove that △ABD ≅ △DCA? - ANSWER C. SAS In the figure below, WU ≅ VT. The congruency theorem can be used to prove that △WUT ≅ △VTU. - ANSWER B. HL Which congruency theorem can be used to prove that △GHL ≅ △KHJ? - ANSWER B. ASA Analyze the diagram below. Which statements regarding the diagram are correct? Check all that apply. - ANSWER A. ST ≅ ST by the reflexive property. B. ∠RWS ≅ ∠UWT because they are vertical angles. C. △RWS ≅ △UWT by AAS. E. ∠WTU ≅ ∠WSR because CPCTC. Rowena is proving that AD ≅ EB. Which statement does the ♣ represent in her proof? - ANSWER A. ΔACD ≅ ΔECB Complete the paragraph proof. We are given AB ≅ AE and BC ≅ DE. This means ABE is an isosceles triangle. Base angles in an isosceles triangle are congruent based on the isosceles triangle theorem, so ∠ABE ≅ ∠AEB. We can then determine △ABC ≅ △AED by . Because of CPCTC, segment AC is congruent to segment . Triangle ACD is an isosceles triangle based on the definition of isosceles triangle. Therefore, based on the isosceles triangle theorem, ∠ACD ≅ ∠ADC. - ANSWER 1. SAS 2. AD Mikal is proving that AE ≅ CE . Which reason does the ♣ represent in Mikal's proof? - ANSWER D. AAS Complete the paragraph proof: It is given that ∠TUW ≅ ∠SRW and RS ≅ TU. Because ∠RWS and ∠UWT are vertical angles and vertical angles are congruent, ∠RWS ≅ ∠UWT. Then, by AAS, △TUW ≅ △SRW. Because CPCTC, SW ≅ TW and WU ≅ RW. Because of the definition of congruence, SW = TW and WU = RW. If we add those equations together, SW + WU = TW + RW. Because of segment addition, SW + WU = SU and TW + RW = TR. Then by substitution, SU = TR. If segments are equal, then they are congruent, so SU ≅ TR.

Meer zien Lees minder
Instelling
Using Triangle Congruence Theorems
Vak
Using Triangle Congruence Theorems








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Using Triangle Congruence Theorems
Vak
Using Triangle Congruence Theorems

Documentinformatie

Geüpload op
9 oktober 2025
Aantal pagina's
3
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Using Triangle Congruence Theorems Exam Questions
And Answers Verified 100% Correct

Two angles and the non-included side of one triangle are congruent to the
corresponding parts of another triangle. Which congruence theorem can be used to
prove that the triangles are congruent? - ANSWER B. AAS

Two sides and the included angle of one triangle are congruent to the corresponding
parts of another triangle. Which congruence theorem can be used to prove that the
triangles are congruent? - ANSWER C. SAS

Given: ∠GHD and ∠EDH are right; GH ≅ ED. Which relationship in the diagram is true?
- ANSWER A. △GHD ≅ △EDH by SAS

Which congruence theorem can be used to prove △WXZ ≅ △YZX? - ANSWER A. AAS
Which congruence theorem can be used to prove △BDA ≅ △BDC? - ANSWER A. HL

Given: ∠BCD is right; BC ≅ DC; DF ≅ BF; FA ≅ FE. Which relationships in the diagram
are true? Check all that apply. - ANSWER 2. △CBF ≅ △CDF by SSS
3. △BFA ≅ △DFE by SAS
5. △CBE ≅ △CDA by HL

Line segments AD and BE intersect at C, and triangles ABC and DEC are formed. They
have the following characteristics:



∠ACB and ∠DCE are vertical angles

∠B ≅ ∠E

BC ≅ EC

Which congruence theorem can be used to prove △ABC ≅ △DEC? - ANSWER B. ASA
€7,92
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
TopGradeGuru
1,5
(2)

Maak kennis met de verkoper

Seller avatar
TopGradeGuru Teachme2-tutor
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
10
Lid sinds
1 jaar
Aantal volgers
0
Documenten
2429
Laatst verkocht
1 maand geleden
GRADEHUB

We provide access to a wide range of professionally curated exams for students and educators. It offers high-quality, up-to-date assessment materials tailored to various subjects and academic levels. With instant downloads and affordable pricing, it's the go-to resource for exam preparation and academic success.

1,5

2 beoordelingen

5
0
4
0
3
0
2
1
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen