100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solution Manual for Principles of Soil Dynamics 3rd Edition by Braja M. Das PDF | Complete Step-by-Step Solutions and Worked Examples | Covers Wave Propagation in Soils, Vibration Analysis, Dynamic Soil Properties, Machine Foundations, Liquefaction, and S

Beoordeling
-
Verkocht
-
Pagina's
152
Cijfer
A+
Geüpload op
06-10-2025
Geschreven in
2025/2026

The Solution Manual for Principles of Soil Dynamics (3rd Edition) by Braja M. Das provides detailed, step-by-step solutions to all textbook problems. It covers dynamic soil behavior, wave propagation, vibration of machine foundations, liquefaction analysis, and earthquake engineering principles. Designed for undergraduate and graduate students in civil and geotechnical engineering, this manual reinforces theoretical understanding with practical examples. Commonly used in top engineering universities such as MIT, Stanford, UC Berkeley, Purdue, Texas A&M, Oxford, Cambridge, and the University of Toronto.

Meer zien Lees minder
Instelling
MATLAB An Introduction With Applications
Vak
MATLAB An Introduction with Applications

















Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
MATLAB An Introduction with Applications
Vak
MATLAB An Introduction with Applications

Documentinformatie

Geüpload op
6 oktober 2025
Aantal pagina's
152
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

@LECTSOLUTIONSSTUVIA

ALL 12 CHAPTERS COVERED




SOLUTIONS MANUAL

, @LECTSOLUTIONSSTUVIA




CONTENTS
Chapter Page

2 ............................................................................................................................. 1

4 9

5 25

6 41

8 ........................................................................................................................... 51

9 ........................................................................................................................... 61

10 ........................................................................................................................... 65

11 ........................................................................................................................... 79

12 ........................................................................................................................... 91

, @LECTSOLUTIONSSTUVIA




Chapter 2

2.1 a. Spring constant, k : The change in the force per unit length change of the spring.

b. Coefficient of subgrade reaction, k :
k
Spring constant divided by the foundation contact area, k
A


c. Undamped natural circular frequency: n rad/s
W
where m = mass =
g


d. Undamped natural frequency: f n (in Hz)
2 m

Note: Circular frequency defines the rate of oscillation in term of radians per unit
time; 2π radians being equal to one complete cycle of rotation.

e. Period, T: The time required for the motion to begin repeating itself.

n
f. Resonance: Resonance occurs when 1


g. Critical damping coefficient: cc 2 km
W
where k = spring constant; m = mass =
g

h. c c
Damping ratio: D =
cc 2 km

where c = viscous damping coefficient; cc = critical damping coefficient

i. Damped natural frequency:

d n 1  D2

fd 1  D2 fn

, @LECTSOLUTIONSSTUVIA




2.2 Weight of machine + foundation, W = 400 kN
Spring constant, k = 100,000 kN/m
W 400 kN
Mass of the machine + foundation, m = = = 40.77
g 9.81 m s2

Natural frequency of undamped free vibration is [Eq. (2.19)]

1 k
fn = = 7.88 Hz
2 m 2 40.77

1 1
From Eq. (2.18), T = = = 0.127 s
fn 7.88


2.3 Weight of machine + foundation, W = 400 kN
Spring constant, k = 100,000 kN/m

Static deflection of foundation is [Eq. (2.2)]

z 400
4 10 3 m = 4 mm
W 100,000
s
k


2.4 External force to which the foundation is subjected, Q 35.6sin t kN
f = 13.33 Hz
Weight of the machine + foundation, W = 178 kN
Spring constant, k = 70,000 kN/m

For this foundation, let time t = 0, z = z0 = 0, zɺ = v0 = 0

W 178 kN
a. Mass of the machine + foundation, m = = = 18.145
g 9.81 m s2

k
n = 62.11 rad/s
m
2 2
T = 0.101 s
n 62.11

b. The frequency of loading, f = 13.33 Hz

2 f 2 (13.33) 83.75 rad/s

, @LECTSOLUTIONSSTUVIA




 
Force due to forced part, F1 k Q0 2 k 2  sin t
 1  n 
 35.6 70, 000 
(70, 000) 2 2 
sin(83.75t)
 1 83.75 62.11 
43.51sin(83.75t ) kN

See the plot below for F1 vs. t




c. Force due to free part, F k Q0 k sin t
n
n 2 35.6 70,
2 2
1 n
000 83.75
70, 000 sin(62.11t)
1 83.75 62.112
2
62.11

58.67sin(62.11t ) kN

See the plot above in Part b for F2 vs. t.


d. Total dynamic force on the subgrade:

F F1 F2 43.51sin(83.75t ) 58.67(62.11t ) kN

The plot of variation of the dynamic force on the subgrade of the foundation due
to (a) forced part, (b) free part, and (c) total of the response for time t = 0 to t = 2T
is shown in the figure above (Part b).

, @LECTSOLUTIONSSTUVIA




2.5 The natural frequency of the undamped free vibration of the spring mass system is given by
1 keq
fn where keq = equivalent stiffness of the spring system
2 m

For springs attached in series, the equivalent stiffness is given by

1 1 1 k1k2
, or
keq 1 keq k1
k1 k2 k2

The natural frequency of the given undamped free vibration spring mass system is

1 k1k2 
fn 
2π k1  k2 m


2.6 The natural frequency of the undamped free vibration of the spring mass system is given by

1 keq
fn where keq = equivalent stiffness of the spring system
2 m

For springs attached in parallel, the equivalent stiffness is given by

keq = k1 + k2

The natural frequency of the given undamped free vibration spring mass system is

1 (k1  k2 )
fn
2π m


2.7 The natural frequency of the undamped free vibration of the spring mass system is given by

1 keq
fn where keq = equivalent stiffness of the spring system
2 m

In the given spring-mass system, springs with stiffness k1 and k2 are in series.
Hence, their equivalent stiffness is

k1k2 100 20,000
keq(1,2) 66.67 N/mm
k 200 300
k 100
200
1 2


Similarly, springs with stiffness k4 and k5 are in series. Hence, their equivalent stiffness is

k4 k5 100 150
keq (4,5) 60 N/mm
k4 100 150
k5

, @LECTSOLUTIONSSTUVIA
Now, the given spring system can be reduced to three springs in series.

, @LECTSOLUTIONSSTUVIA




The resulting system will be three springs in parallel. Their equivalent stiffness is given by

keq keq (1,2) k3 keq ( 4,5) 66.67 150 60 276.67 N/mm 276.67 kN/m

The natural frequency of the undamped free vibration of the spring mass system is given by

1 keq 1 267.67 1000
fn = 8.37 Hz
2 m 2 100

Time period T (1/fn ) (1/ 8.37) 0.119 s


2.8 Sinusoidal–varying force, Q 50 sin t N; Q0 50 N; ω = 47 rad/s

keq 276.67 1000
n = 52.6 rad/s
m 100

Amplitude of vibration = static deflection zs × magnification M

Q0 50
z s = 0.1807 mm
k eq 276.67

From Eq. (2.34),

1 1
M = 4.96
1  ( n ) 2



Amplitude of vibration = 0.1807 4.96 = 0.896 mm


2.9 Weight of the body, W = 135 N
Mass of the body, m W g 135 9.81 13.76 kg
Spring constant, k = 2600 N/m
Dashpot resistance, c 0.7 (60 1000) 11.67 N-s/m

, @LECTSOLUTIONSSTUVIA




a. Damped natural frequency [Eq. (2.67)]
fd 1  D2 fn

c c 11.67
D = 0.031
2 km
cc

1 k
fn = 2.19 Hz
2 m 2 13.76

fd 1  0.0312 (2.19) = 2.18 Hz


b. Damping ratio [Eq. (2.47b)],

c c 11.67
D 0.031
2 km
cc

c. Ratio of successive amplitudes of the body is given by [Eq. (2.70)],

Zn
e
Zn 1

Zn 2 2 0.031
D
where = 0.195
ln 1  0.0312
Z
n 1 1  D2

Zn
e e0.195 = 1.215
Zn 1


d. At time t = 0 s, amplitude Z0 = 25 mm.
After n cycles of disturbance
1 Z0 2 D Z0 2 nD
ln ; ln
1  D2 1 D2
n Zn Zn

With n = 5,

Z0 2 5 D 2 5 0.031
ln = 0.974
Z5 1  D2 1  0.0312

, @LECTSOLUTIONSSTUVIA
Z0 25
e0.974 = Z5 = 9.44 mm
2.649
2.649;
Z5

After 5 cycles of disturbance, the amplitude of vibration = 9.44 mm
€18,12
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
LECTJULIESOLUTIONS Havard School
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
9
Lid sinds
11 maanden
Aantal volgers
0
Documenten
306
Laatst verkocht
4 weken geleden
JULIESOLUTIONS ALL STUDY GUIDES

You will get solutions to all subjects in both assignments and major exams. Contact me for any assisstance. Good luck! Simple well-researched education material for you. Expertise in Nursing, Mathematics, Psychology, Biology etc,. My Work contains the latest, updated Exam Solutions, Study Guides, Notes 100% verified Guarantee .

5,0

2 beoordelingen

5
2
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen