100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Answer Key for Introduction to Linear Algebra – 6th Edition by Gilbert Strang

Beoordeling
-
Verkocht
-
Pagina's
187
Cijfer
A+
Geüpload op
29-09-2025
Geschreven in
2025/2026

This document provides detailed solutions and explanations for exercises found in the 6th edition of Introduction to Linear Algebra by Gilbert Strang, a widely used textbook in undergraduate mathematics courses. It serves as a companion resource for students, educators, and self-learners aiming to deepen their understanding of core linear algebra concepts such as matrix operations, vector spaces, determinants, eigenvalues, and linear transformations. The answer key supports mastery through step-by-step problem-solving strategies and reinforces theoretical insights with practical applications.

Meer zien Lees minder
Instelling
Introduction To Linear Algebra
Vak
Introduction to Linear Algebra











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Introduction to Linear Algebra
Vak
Introduction to Linear Algebra

Documentinformatie

Geüpload op
29 september 2025
Aantal pagina's
187
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

ALL 10 CHAPTERS COVERED




Answer key

,2 Solutions to Exercises

Problem Set 1.1, page 8

1 The combinations give (a) a line in R3 (b) a plane in R3 (c) all of R3.

2 v + w = (2, 3) and v − w = (6, −1) will be the diagonals of the parallelogram with

v and w as two sides going out from (0, 0).

3 This problem gives the diagonals v + w and v − w of the parallelogram and asks for

the sides: The opposite of Problem 2. In this example v = (3, 3) and w = (2, −2).

4 3v + w = (7, 5) and cv + dw = (2c + d, c + 2d).

5 u+v = (−2, 3, 1) and u+v+w = (0, 0, 0) and 2u+2v+w = ( add first answers) =

(−2, 3, 1). The vectors u, v, w are in the same plane because a combination gives
(0, 0, 0). Stated another way: u = −v − w is in the plane of v and w.

6 The components of every cv + dw add to zero because the components of v and of w

add to zero. c = 3 and d = 9 give (3, 3, −6). There is no solution to cv+dw = (3, 3, 6)
because 3 + 3 + 6 is not zero.

7 The nine combinations c(2, 1) + d(0, 1) with c = 0, 1, 2 and d = (0, 1, 2) will lie on a

lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.

8 The other diagonal is v − w (or else w − v). Adding diagonals gives 2v (or 2w).

9 The fourth corner can be (4, 4) or (4, 0) or (−2, 2). Three possible parallelograms!

10 i − j = (1, 1, 0) is in the base (x-y plane). i + j + k = (1, 1, 1) is the opposite corner

from (0, 0, 0). Points in the cube have 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.
11 Four more corners (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). The center point is ( 1 , 1 , 1 ).
2 2 2
Centers of faces are ( 1 , 1 , 0), ( 1 , 1 , 1) and (0, 1 , 1 ), (1, 1 , 1 ) and ( 1 , 0, 1 ), ( 1 , 1, 1 ).
2 2 2 2 2 2 2 2 2 2 2 2

12 The combinations of i = (1, 0, 0) and i + j = (1, 1, 0) fill the xy plane in xyz space.

13 Sum = zero vector. Sum = −2:00 vector = 8:00 vector. 2:00 is 30◦ from horizontal

= (cos π , sin π ) = ( 3/2, 1/2).
6 6

14 Moving the origin to 6:00 adds j = (0, 1) to every vector. So the sum of twelve vectors

changes from 0 to 12j = (0, 12).

,Solutions to Exercises 3

3 1
15 The point v+
w is three-fourths of the way to v starting from w. The vector
4 4
1 1 1 1
v + w is halfway to u = v + w. The vector v + w is 2u (the far corner of the
4 4 2 2
parallelogram).

16 All combinations with c + d = 1 are on the line that passes through v and w.

The point V = −v + 2w is on that line but it is beyond w.
17 All vectors cv + cw are on the line passing through (0, 0) and u = 1v + 1 w. That
2 2

line continues out beyond v + w and back beyond (0, 0). With c ≥ 0, half of this line
is removed, leaving a ray that starts at (0, 0).

18 The combinations cv + dw with 0 ≤ c ≤ 1 and 0 ≤ d ≤ 1 fill the parallelogram with

sides v and w. For example, if v = (1, 0) and w = (0, 1) then cv + dw fills the unit
square. But when v = (a, 0) and w = (b, 0) these combinations only fill a segment of
a line.

19 With c ≥ 0 and d ≥ 0 we get the infinite “cone” or “wedge” between v and w. For

example, if v = (1, 0) and w = (0, 1), then the cone is the whole quadrant x ≥ 0, y ≥
0. Question: What if w = −v? The cone opens to a half-space. But the combinations
of v = (1, 0) and w = (−1, 0) only fill a line.
20 (a) 1u + 1 v + 1 w is the center of the triangle between u, v and w; 1 u + 1 w lies
3 3 3 2 2

between u and w (b) To fill the triangle keep c ≥ 0, d ≥ 0, e ≥ 0, and c + d + e = 1.

21 The sum is (v − u) +(w − v) +(u − w) = zero vector. Those three sides of a triangle

are in the same plane!
22 The vector 1 (u + v + w) is outside the pyramid because c + d + e = 1 + 1 + 1 > 1.
2 2 2 2

23 All vectors are combinations of u, v, w as drawn (not in the same plane). Start by

seeing that cu + dv fills a plane, then adding ew fills all of R3.

24 The combinations of u and v fill one plane. The combinations of v and w fill another

plane. Those planes meet in a line: only the vectors cv are in both planes.

25 (a) For a line, choose u = v = w = any nonzero vector (b) For a plane, choose
u and v in different directions. A combination like w = u + v is in the same plane.

, 4 Solutions to Exercises

26 Two equations come from the two components: c + 3d = 14 and 2c + d = 8. The

solution is c = 2 and d = 4. Then 2(1, 2) + 4(3, 1) = (14, 8).

27 A four-dimensional cube has 24 = 16 corners and 2 · 4 = 8 three-dimensional faces

and 24 two-dimensional faces and 32 edges in Worked Example 2.4 A.

28 There are 6 unknown numbers v1, v2, v3, w1, w2, w3. The six equations come from the

components of v + w = (4, 5, 6) and v − w = (2, 5, 8). Add to find 2v = (6, 10, 14)
so v = (3, 5, 7) and w = (1, 0, −1).

29 Fact : For any three vectors u, v, w in the plane, some combination cu + dv + ew is

the zero vector (beyond the obvious c = d = e = 0). So if there is one combination
Cu + Dv + Ew that produces b, there will be many more—just add c, d, e or 2c, 2d, 2e
to the particular solution C, D, E.

The example has 3u − 2v + w = 3(1, 3) − 2(2, 7) + 1(1, 5) = (0, 0). It also has
−2u + 1v + 0w = b = (0, 1). Adding gives u − v + w = (0, 1). In this case c, d, e
equal 3, −2, 1 and C, D, E = −2, 1, 0.

Could another example have u, v, w that could NOT combine to produce b ? Yes. The
vectors (1, 1), (2, 2), (3, 3) are on a line and no combination produces b. We can easily
solve cu + dv + ew = 0 but not Cu + Dv + Ew = b.

30 The combinations of v and w fill the plane unless v and w lie on the same line through

(0, 0). Four vectors whose combinations fill 4-dimensional space: one example is the
“standard basis” (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1).

31 The equations cu + dv + ew = b are


2c −d = 1 So d = 2e c = 3/4
−c +2d −e = 0 then c = 3e d = 2/4
−d +2e = 0 then 4e = 1 e = 1/4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
NurseCelestine Chamberlain College Of Nursing
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
105
Lid sinds
1 jaar
Aantal volgers
28
Documenten
4997
Laatst verkocht
6 dagen geleden
Nurse Celestine Study Hub

Welcome! I’m Nurse Celestine, your go-to source for nursing test banks, solution manuals, and exam prep materials. My uploads cover trusted textbooks from top nursing programs — perfect for NCLEX prep, pharmacology, anatomy, and clinical courses. Study smarter, not harder!

4,4

311 beoordelingen

5
202
4
40
3
57
2
5
1
7

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen